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Loss distributions
Moment generating functions (MGFs)

• Revision
• Example 1: MGF of the Uniform (0,1) r.v.
• Finding moments from MGF
• Example 2: Finding the kth moment of the Uniform(0,1) 

r.v. from its MGF
• Generating moments from calculus

Statistical distributions
• The Exponential distribution(MGF)
• The Gamma distribution(MGF)
• Estimating Gamma probabilities using Chi-square 

distribution)
• The Normal distribution(MGF)
• The Lognormal distribution
• The Pareto distribution
• The Burr distribution(Example: Deriving the median)
• The Weibull distribution

Estimation

Loss distributions
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• Estimator criteria 
• Point estimates

Method of moments
• Example 1: Estimating one parameter
• Example 2: Estimating two parameters
• Example 3: Estimating the two parameters of a 

Lognormal distribution

Maximum likelihood estimation
• 4 steps to finding a MLE
• The Exponential distribution
• The Gamma distribution
• The Normal distribution
• The Lognormal distribution
• The Pareto distribution
• The Weibull and Burr distributions

Method of percentiles
Goodness-of-fit



Loss distributions are statistical distributions that are used to model claim 
amounts.

The key assumption in all the models studied here is that: 
the occurrence of a claim and the amount of a claim can be studied separately.

Thus, a claim occurs according to some simple model for events occurring in time, 
then the amount of the claim is chosen from a distribution describing the claim 
amount.

Loss distributions
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1.The frequency of claim amounts when 
plotted against size might look like the above 
graph.

2.Statistical distributions can be used to 
approximate this graph.

Loss distributions
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1.We might decide to use a loss distribution like 
the above as an approximation to the claims 
arising in the graph in the left.

2.The object is to describe the variation in claim 
amounts by finding a loss distribution that 
adequately describes the claims that actually 
occur.



‣ In practice, the exact claims distribution will never be known.

‣ A standard method of proceeding is to assume that the claims distribution is a member of a certain family.

‣ The parameters of the family must now be estimated using the claim amount records by an appropriate 
method such as maximum likelihood.

‣ Complications will arise if large claims have been limited (by reinsurance) or some small claims have not 
been lodged (policy excess).

‣ A lot of studies have been performed on the kind of distribution that can be used to describe the variation in 
claim amounts.

‣ The general conclusion is that claims distributions tend to be positively skewed and long-tailed.

‣ Can you think of a statistical distribution that is positively skewed?

Loss distributions
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‣ Moment Generating Functions for the Exponential, Gamma and Normal distributions are reasonably 
straightforward to derive.

‣ While these three distributions can be used to model losses, in practice there are a wide variety of other 
distributions that may also be used:

1. The Lognormal distribution

2. The Pareto distribution

3. The Burr distribution

4. The Weibull distribution

Loss distributions
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Moment generating functions (Revision)
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The nth moment of a random variable X is defined to be E [Xn].
The nth central moment of X is defined to be E [(X −E (X ))n].

Definition of a MGF: The moment generating function (MGF) of a random variable X is a
function MX (t ) defined as:

MX (t ) = E [etX ]
We say that the MGF of X exists if there is a positive constant a such that MX (t ) is finite for all
t ∈ [−a,a].

Why is the MGF useful?
1.The MGF gives us all the moments of X, hence the name!
2.The MGF (if it exists) uniquely determines the distribution. If 2 random variables have the

same MGF, then they must have the same distribution. So if you find the MGF of a random
variable, you will have determined its distribution.
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The skewness and coefficient of skewness of a random variable X are respectively:

skew(X) = E [(X − µ)3]

where µ is the mean of the distribution and

coeff of skew(X) = skew(X) .
[var(X)]3/2

Moment generating functions (Revision)



MGF
Example 1: MGF of the Uniform(0,1) random variable
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If Y is a Uniform(0,1) random variable, find its MGF.

Answer:

MY (t) = E[etY ]

Note that we always have
MY (0) = E[e0.Y ] = 1 

So MY (t) is well-defined for all t∈ℝ.



MGF
Finding moments from the MGF
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If Y ∼ Uniform(0,1), find E[Yk ] using MY (t).
Answer:
Having MY (t) from Example 1, we have:

MY (t) = et – 1
t

E[Yk ] =

MGF
Example 2: Finding the kth moment of the Uniform(0,1) r.v. from its MGF
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From calculus we remember that the coefficient of 
!"

#!
in the Taylor series of MX (t) is obtained by 

taking the kth derivative of MX (t) and evaluating it at t = 0, that is                                            

MGF
Generating moments with calculus
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A random variable X has an Exponential distribution with parameter λ > 0 if it has CDF:

F (x) = 1 −e−λx , x > 0

where CDF is the cumulative distribution function and is defined by P(X ≤ x).
• We write X ∼ Exp(λ)
• For the exponential distribution the PDF is: f (x) = λe−λx ,x > 0
• We know that the mean is 1/λ and the variance is 1/ λ2 but how are these derived?

The Exponential Distribution
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Question: Find the MGF of X , MX (t) and all of its moments E[Xk ].

Answer:
MX (t) = E[etX ]

The Exponential distribution
MGF

14



Answer:

Exercise: Use the MGF for the Exponential to derive the mean and variance. 

The Exponential distribution
MGF
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The Gamma distribution
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Question: Show that the MGF of the gamma distribution is MX (t) = (1 - t	λ )
)α

Answer:

The Gamma distribution
MGF
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This makes the whole integral the PDF of a 
Gamma(α,λ − t ) distribution, which is always 1. 
So we have:



• Because there is no closed form for the CDF of a Gamma distribution, it is not easy to find Gamma probabilities 
directly.

• However, a rough estimate can be obtained by using the Chi-square distribution.
• We state the following result without proof. This result can be used in all instances for finding probabilities from 

the Gamma distribution as direct integration is not usually possible.

The Gamma distribution
Estimating Gamma probabilities using Chi-square distribution
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If Y follows a chi-square distribution with degree of freedom 2α, then  

MY (t ) = (1 – 2t))α for t < 1	2



Question:
(i)

(ii)

Answer (i):

The Gamma distribution
Estimating gamma probabilities using chi-square distribution
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Answer (ii): Find P(X > 4.375 )

From the statistical tables, this is
1 - 0.9799 = 0.0201

Check using R. Find P(X > 4.375) by typing in the following and clicking ‘Run’.
pgamma(4.375,10,4,lower.tail=FALSE)

What is the R output that you get?
Answer: 0.02010428

The Gamma distribution
Estimating gamma probabilities using chi-square distribution
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• Since loss distributions tend to be positively skewed, the Normal distribution is of limited use
for modelling loss distributions because of its symmetry.

• Deriving the formula for the MGF of a N(0, 1) random variable is left as a worksheet exercise.
• Here, we state without proof the MGF of a N(µ, σ2) random variable.

The Normal distribution
MGF
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• The mean and variance are:

• Lognormal probabilities can be evaluated by expressing them as standard normal probabilities 
and looking up the values in the Tables.

The Lognormal distribution
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The Pareto distribution
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The Pareto distribution
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P(x) in the graph here refers to probability density 
function.



• This is the CDF of the Burr distribution (also called the transformed Pareto).

• The addition of the γ parameter gives extra flexibility when we are fitting to data.

The Burr distribution (transformed Pareto)
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(i) Find a general formula for the median of the Burr distribution.
(ii) Find the median of the Burr distribution that has parameters λ= 800,α = 4.5 and γ= 0.75
Answer (i):

The Burr distribution (transformed Pareto)
Example: Deriving the median
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(i) Find a general formula for the median of the Burr distribution.
(ii) Find the median of the Burr distribution that has parameters λ= 800,α = 4.5 and γ= 0.75
Answer (ii):

• As an exercise you should calculate the mean of this distribution to 1,782.7.
• There is a large difference to the median.
• What does this mean for the skewness of this distribution?

The Burr distribution (transformed Pareto)
Example: Deriving the median
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• The Pareto distribution is a distribution with an upper tail that tends to 0 as a power of x.
• This gives a distribution with a much heavier tail than the exponential.
• The expressions for the upper tails of the exponential and Pareto distributions are:

• So if we want to choose a model with a thick tail so as not to underestimate the probability of a large claim, 
we might well choose the Pareto distribution to model our claims (assuming that it is a suitable distribution 
in other respects). 

• However, these are not the only types of tail. 

The Weibull distribution
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The Weibull distribution
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The Weibull distribution
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The mean is



Ø The more important statistical distributions from the general insurance world have been introduced in the preceding 
couple of lectures.

Ø Having met these distributions we note that each distribution involves one or more parameters which determine the 
distribution’s location and spread.

Ø For distributions like the Weibull and Burr we had an additional parameter to determine the shape.

Ø The parameters of a distribution are seldom known a priori and they need to be estimated from claims data 
before the distribution itself can be applied to a particular problem.

Ø The function of the observations which we choose, to estimate a parameter, is known as an estimator and the 
numerical value obtained from it, using a particular set of data is called an estimate.

Ø Often, several different functions will suggest themselves as estimators (for example the sample mean and the 
sample median can both be used to estimate the mean of a Normal population).

Ø We need some criteria to decide which to use.

Estimation
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§ The estimator should be unbiased, so that its expectation is equal to the true value of the parameter.
Thus, on average, the estimate is equal to the underlying parameter. The estimator should not provide 
estimates which are, on average, too high or too low.

§ The estimator should be consistent. By this we mean that, for any small quantity ε, the probability that the 
absolute value of the deviation from the true parameter value is less than ε and tends to 1 as n →∞.
Thus, for an estimate based on a large number of observations, there is a very small probability that its 
value will differ seriously from the true value of the parameter.

§ The estimator should be efficient. That is, the variance of the estimator should be minimal.

Estimation
Estimator criteria
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Statisticians have devised different standard methods for producing point estimates of parameters, including:
1) The method of moments
2) Maximum likelihood
3) Method of percentiles

Ø When sample sizes are large, they all tend to provide more or less the same answers, even in more 
complicated cases.

Ø In other circumstances, however, markedly different results can emerge, and the three criteria on the previous 
slide are often used by statisticians in deciding which estimator to use.

Ø The maximum likelihood method usually provides estimators which are quite satisfactory as far as the above 
criteria are concerned.

Ø However, the method frequently produces equations which are rather awkward to solve and, for this reason, 
the simpler method of moments is often preferred, despite the fact that the resulting estimators may be sub-
optimal in respect of the above three criteria.

Ø Of the three methods listed, the method of moments is perhaps the most readily understood.

Estimation - Point estimates 
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Method of moments

34

ü To obtain a method of moments estimator for a parameter of the distribution we are trying to fit,
We equate the corresponding sample and population moments of the distribution.



If we were trying to estimate the value of a single parameter and we had a sample of n claims whose 
sizes were x1 , x2 , . . . , xn we would solve the equation:

Ø The LHS is the 1st non-central moment for the population
Ø The RHS is the 1st non-central moment for the sample
Ø i.e. we would equate the first non-central moments for the population and the sample. 

Method of moments
Example 1: Estimating one parameter
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If we are trying to find estimates for two parameters (e.g. if we are fitting a Gamma distribution and need to obtain 
estimates for both parameters), we would solve the simultaneous equations:

Ø i.e. we would equate the first two non-central moments for the population and the sample.

In fact, in the two-parameter case, estimates of parameters are often obtained by equating population and sample 
means and variances. If we use the n-denominator sample variance:

Ø this would give the same estimates as would be obtained by equating the first two non-central moments.

Method of moments
Example 2: Estimating two parameters
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Question: The table shows the claim sizes of a sample of 100 claims on an insurance company. Assuming that 
the Log-normal distribution is a suitable model:
a) Obtain estimates of its parameters µ and σ
b) Estimate the probability that a particular claim exceeds £4,000.

Method of moments
Example 3: Estimating the two parameters of a Lognormal distribution
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Claim size (£) Number of claims
0-400 2
400-800 24
800-1200 32
1200-1600 21
1600-2000 10
2000-2400 6
2400-2800 3
2800-3200 1
3200-3600 1
over 3600 0
Total 100



Answer:
The skewness of the observed claim size distribution is evident when the histogram representing the data is 
drawn:

Method of moments
Example 3: Estimating the two parameters of a Lognormal distribution
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Answer:
a) Sample mean
Assuming that the number of claims in the right-hand column can be said to refer to claims with sizes equal to 
the mid-point of the respective claim size interval (which may not be a very accurate assumption with a skew 
distribution like this one), we obtain the mean claim size of the observed distribution as follows:

Sample mean = 

Method of moments
Example 3: Estimating the two parameters of a Lognormal distribution
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Answer:
a) Sample variance
The variance of the observed claim size distribution can be calculated as follows:

Method of moments
Example 3: Estimating the two parameters of a Lognormal distribution
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Answer:
a) Population mean and variance
The mean and variance of a Lognormal (µ, σ2) distribution are:

Method of moments
Example 3: Estimating the two parameters of a Lognormal distribution
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Answer:
a) Now we can equate our sample moments to our population moments.

Method of moments
Example 3: Estimating the two parameters of a Lognormal distribution
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Answer: a)

Method of moments
Example 3: Estimating the two parameters of a Lognormal distribution
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The blue curve shows 
the fitted distribution 

with
µ = 6.993,

and
σ = 0.469



Answer: b)
Estimate the probability that a particular claim exceeds £4,000.
From part a:

X ~ Lognormal(6.993, 0.4692)
so

ln X ~ Normal(6.993, 0.4692)
we can write

ln X – 6.993 ~ Normal(0, 1).
0.469

Therefore P(X > 4,000)  = P(  ln X – 6.993 > ln 4,000 – 6.993)
0.469 0.469

= P(Z > 2.774)
= 0.0028

where Z is the standard normal r.v.

Method of moments
Example 3: Estimating the two parameters of a Lognormal distribution
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The likelihood function of a random variable, X , is the probability (or PDF) of a specific 
observation given a certain value of the parameter, θ.
The maximum likelihood estimate (MLE) is the one that yields the highest probability (or 
PDF), i.e. that maximises the likelihood function.

Maximum likelihood estimation
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Ø To determine the Maximum Likelihood Estimate (MLE), the likelihood function needs to be 
maximised.

Ø Often it is practical to consider the Log-likelihood function:

Maximum likelihood estimation
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Question: What if there is more than one parameter that you are trying to estimate?
Answer: Where there is more than one parameter, the MLEs for each parameter can be determined by 
taking partial derivatives of the log-likelihood function and setting each to zero.

Maximum likelihood estimation
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Step 1 Write down the likelihood function for the available data.

If the likelihood is based on a set of known values x1, x2, . . . , xn, then the likelihood function will take the form

f (x1|θ) f (x2|θ) . . . f (xn|θ),

where f (x|θ) is the PDF of X|θ, a continuous random variable or

P(X = x1|θ)P(X = x2|θ), . . . ,P(X = xn|θ)
in the case where X|θ is a discrete random variable.

Maximum likelihood estimation
4 steps to finding a MLE
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Step 2 Take natural logs. 
This should simplify the resulting algebra.

Step 3 Maximise the Log-likelihood function.
This usually involves differentiating the log-likelihood function with respect to each of the unknown parameters 
and setting the resulting expression equal to zero.

Step 4 Solve the resulting equations to find the MLEs of your parameters. 
You should check that the values you have found do indeed maximise the function by taking second 
derivatives - forgetting to do this is a common student mistake.

Maximum likelihood estimation
4 steps to finding a MLE
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Example: 
An insurance company uses an Exponential distribution to model the cost of repairing insured vehicles that are 
involved in accidents. Let λ denote the parameter of the Exponential distribution. Find the maximum likelihood 
estimate of λ, given that the average cost of repairing a sample of 1,000 vehicles was £2,200.

Answer:
Let X1,X2, . . . ,Xn denote the individual repair costs (where n = 1000). The likelihood of obtaining these values 
for the costs, if they come from an Exponential distribution with parameter λ is:

Maximum likelihood estimation
The Exponential distribution
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Answer(continued):
To find the MLE, we need to find the value of λ that maximises the likelihood, or, alternatively, the value that 
maximises the log-likelihood.

log(L) = nlog(λ)− λnx̄ .
Differentiating to look for stationary points:

Maximum likelihood estimation
The Exponential distribution
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Answer(continued):
The second derivative is

Maximum likelihood estimation
The Exponential distribution
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The moments have a simple form and so the method of moments is very easy to apply. 
The MLEs for a gamma distribution cannot be obtained in closed form (i.e. in terms of 
elementary functions) but the moment estimators can be used as initial estimators in the 
search of MLEs.

Maximum likelihood estimation
The Gamma distribution
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Both the method of moments and MLE are straightforward to apply in this case.
Both give the obvious answers:

Maximum likelihood estimation
The Normal distribution
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Maximum likelihood estimation
The Lognormal distribution

55



The method of moments is very easy to apply in the case of the Pareto distribution but the estimators 
obtained in this way will tend to have rather large standard errors.
This is mainly because S2, the sample variance, has a very large variance.
However, the method does provide initial estimators for more efficient methods of estimation that may 
not be so simple to apply, like maximum likelihood, where numerical methods may need to be used.

Example:
A random sample of claims with n = 20 from a distribution believed to be Pareto with parameters α and
λ gives values such that:

Maximum likelihood estimation
The Pareto distribution
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Answer: 
We first work out the population moments. The first and second moments of the Pareto distribution are:

Maximum likelihood estimation
The Pareto distribution
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Answer (continued):
We next equate the population moments with the sample moments. 

Maximum likelihood estimation
The Pareto distribution
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Neither the method of moments nor maximum likelihood is straightforward to apply if both of the 
parameters c and γ are unknown.
If we at least know γ then MLE can be used.
However, when we don’t, we can use a method called the method of percentiles.

This corresponds to the way in which sample moments are equated to population moments in the 
method of moments.

Maximum likelihood estimation
The Weibull and Burr distribution
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Method of percentiles 
• This involves equating sample percentiles to the distribution function.
• For example we can equate the 25th  and 75th  sample percentiles to the population quartiles.



Ø In the method of moments the first two moments are used if there are two unknown parameters.
Ø In a similar fashion when using the method of percentiles, the median would be used if there was just 

one parameter to estimate.
Ø With two parameters the choice is less clear but lower and upper quartiles is a widely-accepted 

choice.

Example:
Estimate c and γ in the Weibull distribution using the method of percentiles, where the first sample quartile 
is 401 and the third sample quartile is 2,836.75.

Answer:
The two equations for c and γ are:

The method of percentiles
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Answer (continued):
These two equations can be rewritten as:

−c ×401γ = log(0.75)
and

−c ×2,836.75γ = log(0.25)

The method of percentiles
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Ø One method of testing whether a given loss distribution provides a good model for the observed claim 
amounts is to apply a chi-square goodness-of-fit test.

Example:
A breakdown of the repair costs of vehicles from our earlier example revealed the following numbers in 
different bands:

Use this information to test whether the exponential distribution provides a good model for the individual 
repair costs.

Goodness-of-fit 
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£0 - £1000 : 200
£1000 - £2000: 300
£2000 - £3000: 250
£3000 - £4000: 150
£4000 - £5000: 100
£5000+: 0



Answer:
• We are testing:
H0: The costs come from an exponential distribution.
H1: The costs do not come from an exponential distribution.

• In order to apply the chi-square test we need to determine the “expected” numbers.
i.e. the numbers in each band if the costs are from an Exponential distribution.

Goodness-of-fit 
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Answer (continued):
• From earlier example, we estimated the value of lambda as 1/2200.

and the expected number for this band is: 1,000 ×0.1472 = 147.2
The expected numbers for all the bands can be calculated in a similar way, giving:
365.3, 231.8, 147.2, 93.4, 59.3, 103.0

Goodness-of-fit 
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Answer (continued):
• The value of the chi-square statistic can then be calculated:

• We have 6 bands but we equated the totals and estimated one parameter so that means 4 
degrees of freedom.

• Our observed value of the chi-square statistic far exceeds 14.86, the upper 99.5% point of a 
chi-square with 4 d.f.

• So we can reject H0 and conclude that these repair costs do not conform to an exponential 
distribution.

Goodness-of-fit 
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Ø Given a set of data, we fit a distribution and estimate the parameters of the distribution using an 
appropriate method method of moments, MLE or method of percentiles.

Ø We can check the fit in R by plotting a histogram of the data and superimposing the density 
function of the fitted distribution. 

Ø Better yet, we can plot an empirical density function from the data using the function density, 
and add the true density function of the fitted distribution.

Ø A better way is to use the qqplot function to compare the sample data to simulated values from 
the fitted model distribution. A straight diagonal line indicates perfect fit:

Ø qqplot(<simulated values from fitted distribution>, <values from data>)

Ø abline(0,1)

Ø Note that abline(a,b) adds a line y=bx +a onto an existing plot.

Goodness-of-fit 
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