QUEEN MARY, UNIVERSITY OF LONDON

MTH6102: Bayesian Statistical Methods

Exercise sheet 10

2023-2024

This exercise sheet 10 is assessed and counts for 4% of the module total. The deadline for submission is Monday the 11th December at 11am.

Submit the R code used as an R script file (with extension .R). But you need to write the answers in a separate file. This can be a Word document, pdf or a clearly legible image of hand-written work. So you need to submit two files.

- 1. **50 marks.** Let the observed data be y = (6, 4, 9, 2, 0, 3), a random sample from the Poisson distribution with mean λ , where $\lambda > 0$ is unknown. Suppose that we assume a Gamma(1,1) prior distribution for λ . The posterior density, $p(\lambda \mid y)$, for λ is Gamma(1+S,1+n), where $S = \sum_{i=1}^{6} y_i$ and n = 6. Suppose that you want to construct a symmetric Metropolis-Hastings on the log-scale to generate a sample from this posterior distribution by using a normal proposal distribution with standard deviation b = 0.2.
 - (a) Write down the steps in this symmetric Metropolis-Hastings (on the log-scale) to simulate realisations from the posterior density $p(\lambda \mid y)$.
 - (b) Implement the algorithm in R and plot the observations as a function of the iterations. Use M=5000 for the number of iterations.
 - (c) To assess the accuracy compare the empirical distribution of the sample with the exact posterior density, Gamma(1 + S, 1 + n).
 - (d) Rerun the algorithm in R using a smaller b = 0.01 and a larger b = 20. What are the effects on the behaviour of the algorithm of making b smaller? What are the effects of making it larger?
 - (e) Add code to count how many times the proposed value for λ was accepted. Rerun the algorithm using values of b = 0.01, b = 0.2 and b = 20, and each time calculate the proportion of steps that were accepted. Then plot this acceptance probability against b. Examine how the acceptance probability for this algorithm depends b.
- 2. **50 marks.** Let y_1, \ldots, y_n be a sample from a Poisson distribution with mean λ , where λ is given a Gamma (α, β) prior distribution.
 - (a) It is observed that $y_1 = y_2 = \cdots = y_n = 0$, and we take $\alpha = 1, \beta = 1$.
 - i. What is the posterior distribution for λ ?
 - ii. What is the posterior mean?
 - iii. What is the posterior median and an equal tail 95% credible interval for λ (without using R)?

(b) Show that if a new data-point x is generated from the same Poisson distribution, the posterior predictive probability that x=0 is

$$p(x = 0 \mid y) = \frac{n+1}{n+2}.$$

- (c) Now suppose that we have general y_1, \ldots, y_n , α and β ; and that again x is a new data-point from the same Poisson distribution.
 - i. Find the mean and variance of x.
 - ii. Derive the full posterior predictive distribution for x.
- (d) Use R to check as many of these results as you can.