
Dr K Clough, Topics in Scientific computing, Autumn term 2023

Week 8: Representing functions: 
interpolation, integration, 
differentiation
Polynomial bases for colocation, numerical quadrature and finite 
differencing



Plan for today
1. What are we doing and why?


2. Interpolation of functions - given some points, give me a function that 
roughly fits the true one at all points in the interval


3. Integration of functions - given some points, estimate the area under the 
curve (also used to integrate in time as in the Euler method we have seen) 
 
Next week:


4. Differentiation of functions - given some points, estimate the local derivative 
of the function (we will do this next week, but have it in mind now!)



• Most physical systems are described in the language of ODEs and PDEs, 
not as closed form expressions  
 
e.g. the heat equation 
 

                


• Tell me your initial temperature profile, 
and I can tell you how it changes


• Cannot simply write down T = f(x,t) 
except in very simple cases

∂T
∂t

= α
∂2T
∂x2

What are we doing and why?

Temperature T

Space x

How does T change over time?




• Most physical systems are described in the language of ODEs and PDEs, 
not as closed form expressions  
 
e.g. the heat equation 
 

                


• Tell me your initial temperature profile, 
and I can tell you how it changes


• Cannot simply write down T = f(x,t) 
except in very simple cases

∂T
∂t

= α
∂2T
∂x2

What are we doing and why?

Temperature T

Space x

The temperature profile spreads out - the value decreases 
at a maximum where the second derivative is negative



• It is difficult to store (irregular) continuous functions in finite memory on 
a computer 

• In general we will want to represent functions as 
some collection of discrete values


• The simplest way is as a series of values 
at discrete physical points


• Physical quantities will be related to  
the integral or derivative of the  
function, so we need ways to  
represent and calculate these from  
the discrete values we store

What are we doing and why?

Some independent variable

How could I most efficiently store 
this function?


Some function



What are we doing and why?

Some independent variable

Some function

This looks like a damped sinusoid, so I could store it as 
4 numbers, the amplitude, frequency, offset and the 
decay rate, that is I could fit A, B, C and D in the 
expression: 

 + D. This is a spectral method.f(x) = Ae−Bt sin(Cx)

• It is difficult to store (irregular) continuous functions in finite memory on 
a computer 

• In general we will want to represent functions as 
some collection of discrete values


• The simplest way is as a series of values 
at discrete physical points


• Physical quantities will be related to  
the integral or derivative of the  
function, so we need ways to  
represent and calculate these from  
the discrete values we store



• All methods rely on some basis of functions 

• We express the true function as a weighted sum of 
some basis functions


• Usually we require the basis functions to be 
orthonormal


• e.g. Fourier series representation of periodic 
functions 
 
f(x) ∼ A0 +

∞

∑
n=1

(An cos(2πnx/P) + Bn sin(2πnx/P))

What are we doing and why?



• All methods rely on some basis of functions 

• We express the true function as a weighted sum of 
some basis functions


• Usually we require the basis functions to be 
orthonormal


• e.g. Fourier series representation of periodic 
functions 
 
f(x) ∼ A0 +

∞

∑
n=1

(An cos(2πnx/P) + Bn sin(2πnx/P))

What are we doing and why?

What did it mean for the Fourier basis 
functions to be orthonormal? 




• Recall that 
 

  

 
Same for the sine function. Also: 
 

2
P ∫

P/2

−P/2
cos(2πmx/P) cos(2πnx/P) = 1 (m = n) otherwise zero

2
P ∫

P/2

−P/2
sin(2πmx/P) cos(2πnx/P) = 0 always

What are we doing and why?

In this course we will not deal with periodic 
functions, so we will use polynomial bases (and 
related pseudospectral methods), rather than 
spectral (Fourier) methods



Plan for today
1. What are we doing and why?


2. Interpolation of functions - given some points, give me a function that 
roughly fits the true one at all points in the interval


3. Integration of functions - given some points, estimate the area under the 
curve (also used to integrate in time as in the Euler method we have seen) 
 
Next week:


4. Differentiation of functions - given some points, estimate the local derivative 
of the function (we will do this next week, but have it in mind now!)



• Choice of basis function is problem dependent, but some are more robust 
than others


• Consider Taylor polynomials 
 
f(a) +

f′￼(a)
1!

(x − a) +
f′￼′￼(a)
2!

(x − a)2 +
f′￼′￼′￼(a)

3!
(x − a)3 + ⋯,

How to choose a basis

Are the Taylor polynomials a 
good basis for the exponential 

function near x=0? 




• Choice of basis function is problem dependent, but some are more robust 
than others


• Consider Taylor polynomials 
 
f(a) +

f′￼(a)
1!

(x − a) +
f′￼′￼(a)
2!

(x − a)2 +
f′￼′￼′￼(a)

3!
(x − a)3 + ⋯,

How to choose a basis

Yes, they converge to the true 
solution as the order increases



• Choice of basis function is problem dependent, but some are more robust 
than others


• Consider Taylor polynomials 
 
f(a) +

f′￼(a)
1!

(x − a) +
f′￼′￼(a)
2!

(x − a)2 +
f′￼′￼′￼(a)

3!
(x − a)3 + ⋯,

How to choose a basis

Are the Taylor polynomials a 
good basis for the function 1/x 

near x=1? 




• Choice of basis function is problem dependent, but some are more robust 
than others


• Consider Taylor polynomials 
 
f(a) +

f′￼(a)
1!

(x − a) +
f′￼′￼(a)
2!

(x − a)2 +
f′￼′￼′￼(a)

3!
(x − a)3 + ⋯,

How to choose a basis

No! They do not converge to the true 
solution as the order increases, in fact 
they diverge rapidly away from x=a, and 
get worse at higher order!



• Taylor polynomials use the value of the 
function and its derivatives at a single point


• In general we will get better fits by using 
more global (or at least a bit less local) 
information


• This will constraint the behaviour in some 
interval, rather than at a single point


• Another way to think about this is that we 
are always extrapolating with a Taylor 
polynomial, and not interpolating, and we 
know this is usually a bad idea

Taylor polynomials are too local



• Degree n Lagrange polynomials agree exactly with a function f(x) at n+1 
distinct points,  (x0, f(x0)), (x1, f(x1)) . . . (xn+1, f(xn+1))

How can I construct an order n polynomial that 
is zero at all the given points except , and has 

a value of f( ) at that point?

xk

xk

Lagrange polynomials use colocation at points



What does the numerator and denominator 
achieve here?


Lagrange polynomials use colocation at points

• Degree n Lagrange polynomials agree exactly with a function f(x) at n+1 distinct points, 
 


• First we construct the basis functions 
 




• Then their weights are the values of the functions at each point, so that the Lagrange 
interpolant is: 
 

                                                   

(x0, f(x0)), (x1, f(x1)) . . . (xn+1, f(xn+1))

Lk(x) =
n

∏
i=0,i≠k

(x − xi)
(xk − xi)

Pn(x) =
n

∑
k=0

Lk(x) f(xk)



• Degree n Lagrange polynomials agree exactly with a function f(x) at n+1 distinct points, 
 


• First we construct the basis functions 
 




• Then their weights are the values of the functions at each point, so that the Lagrange 
interpolant is: 
 

                                                   

(x0, f(x0)), (x1, f(x1)) . . . (xn+1, f(xn+1))

Lk(x) =
n

∏
i=0,i≠k

(x − xi)
(xk − xi)

Pn(x) =
n

∑
k=0

Lk(x) f(xk)

Numerator - functions to be zero at all of the 
points other than  - denominator - function 
is normalised so it has value 1 at 

xk
xk

Lagrange polynomials use colocation at points



• Degree n Lagrange polynomials agree exactly with a function f(x) at n+1 
distinct points,  


• Easiest to see an example:

(x0, f(x0)), (x1, f(x1)) . . . (xn+1, f(xn+1))

Lagrange polynomials use colocation at points



• Can show that the max error is: 
 

 

 
where  is the (n+1)th derivative of f  
and  


• Can estimate this (if actual function unknown) as 
 

Emax = max
f n+1(ζ)
(n + 1)!

n

∏
i=0

(x − xi)

f n+1(ζ)
ζ ∈ [a, b]

Emax ∼ max [ Pn+1(x) − Pn(x) ]

Error theorem for Lagrange polynomials



• Can use a python function  
scipy.interpolate.lagrange() to construct 
using higher number of points

Is a higher number of 
points always better?


Lagrange polynomials use colocation at points



• More points improved the fit at the interior,  
but with regular intervals it tends to lead  
to spurious oscillations at the edges of  
the interval 
 
-> “Runge’s phenomenon”

Lagrange polynomials use colocation at points



Interpolation using colocation

How can we do better?




Interpolation using colocation
How can we do better?


Some ideas:


1. Split the interval up into sections and use 
lower order interpolants for each section 
-> “composite collocation"


2. Use more information e.g. about the 
derivatives at each point. 
-> “osculating polynomials, e.g. Hermite”


3. Move the points to strategic locations 
-> pseudospectral/Gauss Lobato nodes



1. We could try to divide the interval up 
into smaller sections and fit lower 
order Lagrange polynomials to each 
part in turn - this is a composite 
colocation method. 

How to do better - composite colocation

What are the 
disadvantages here?




1. We could try to divide the interval up 
into smaller sections and fit lower 
order Lagrange polynomials to each 
part in turn - this is a composite 
colocation method. 
 
Disadvantages: 
 
- Derivatives don’t match between 
sections so function not smooth 
 
- We have different polynomials for 
each section, rather than one overall 
one, so less “analytic”

How to do better - composite colocation



2. Osculating polynomials - match both the values of the function and its 
derivatives (up to some order) at each point. e.g. Hermite polynomials fit 
the first derivatives only, so now if we use composite sections the (first) 
derivatives will be smooth. 
 
Python function scipy.interpolate.CubicHermiteSpline can be used for this.

How to do better - osculating polynomials



3. The Gauss Lobato nodes are the zeros 
of the Chebyshev polynomials defined by 

. (They are also the 
projections of equally spaced sections of 
a unit circle onto the x axis - see below) 
 
By locating the points at these locations, 
we effectively force the polynomial basis 
to be the Chebyshev polynomials. 
 
One can show that this makes the error 
exponentially convergent with the order 
of the polynomial.

Tn(cos(x)) = cos(nx)

How to do better - Chebyshev Polynomials



3. Note that the Gauss Lobato nodes for the unit circle are at 
 

 but for a general interval  their values need to be  

 

mapped to  

ui = cos ( πi
N ) [a, b]

xi =
1
2

(b − a)ui +
1
2

(a + b)

How to do better - Chebyshev Polynomials

a b



3. Procedure: locate the points to be fit 
at the (appropriately mapped) Gauss 
Lobato nodes, and then fit a Lagrange 
polynomial of the appropriate order  
(Note: we could also use orthogonality of the 
Chebychev polynomials to find the coefficients of 
each , but we still require collocation at the 
points so the polynomial obtained is unique and thus 
should be the same via either method). 
 
This procedure stabilises the fit 
against Runge’s phenomenon as the 
number of points increases. For 
smooth functions it is a very efficient 
way to represent the data accurately 
using the minimum number of points.

Ti(x)

How to do better - Chebyshev Polynomials



We will investigate all of these methods for fitting a function and compare them. 

In this week’s tutorial



Plan for today
1. What are we doing and why?


2. Interpolation of functions - given some points, give me a function that 
roughly fits the true one at all points in the interval


3. Integration of functions - given some points, estimate the area under the 
curve (also used to integrate in time as in the Euler method we have seen) 
 
Next week:


4. Differentiation of functions - given some points, estimate the local derivative 
of the function (we will do this next week, but have it in mind now!)



Integration
An approximation to the integral of a function as 
a weighted sum of its values at certain points





is called a numerical quadrature. 

Methods can be classed as:


• Single step (often used for time integration 
between steps in an initial value problem)


• Multistep and composite (often used for 
spatial integration at a single time step)

I[ f ] = ∫
b

a
f(x) dx = ∑

i

wi f(xi)



Integration - single step methods
We will study 2 methods that  
just use information about the  
function at the two end points:


1. Trapezoid rule 
 
- uses the value of f


2. Hermite rule 
 
- uses the value of f and dfdx


3. One can go to even higher orders  
but we will not discuss these (see e.g. the Hermite-Lanczos-Dyche or Euler-
Maclaurin formulae) 



Trapezoid rule
• Fit a Lagrange polynomial of order 1 to the endpoints: 
 




• Integrating this between the limits gives  
the well known formula: 
 




• Note that the trapezium rule will  
always over or under estimate the  
integral

P(x) =
(b − x)

Δx
f(a) +

(x − a)
Δx

f(b)

∫
b

a
f(x) dx ≈

f(a) + f(b)
2

Δx + O(Δx3)



Hermite rule
• Knowing the function  and its derivatives  at each end of the interval, 

we can construct a cubic Hermite interpolating polynomial (homework - 
derive or look up the derivation of this cubic polynomial).


• Integrating this cubic function between the limits yields a correction to the 
trapezium rule: 
 




• We see that this method is much more accurate for a given step size, at the 
cost of needing additional information about the function derivatives.

f(x) f′￼(x)

∫
b

a
f(x) dx ≈

f(a) + f(b)
2

Δx +
f′￼(a) − f′￼(b)

12
Δx2 + O(Δx5)



Integration - multistep / composite methods
We will study 3 methods:


1. Composite trapezium rule


2. (Composite) Simpson’s 3 point method 
 
Simpson’s method is very accurate  
and you rarely need anything better.  
 
Unlike in interpolation, making the intervals 
smaller will usually be beneficial, and uniform  
spacing is also not usually problematic.


3. Gaussian quadrature - smarter but with additional complexity



The composite trapezoid rule
Composite version of the single step rule, error now  because we have 

 sections each with error .


• Divide the interval into sections, approximate the area under each section as a 
trapezium, and add them up: 
 




• If the sections are the same width  this simplifies to: 
 

∼ O(Δx2)
N ∼ 1/Δx ∼ O(Δx3)

∫
b

a
f(x) dx ≈

N

∑
k=1

f(xk−1) + f(xk)
2

Δxk,

Δx

∫
b

a
f(x) dx ≈ Δx ( f(xN) + f(x0)

2
+

N−1

∑
k=1

f(xk)) .



Simpson’s 3 point rule
• Fit a Lagrange polynomial of order 2 to the endpoints and a midpoint: 
 




• Integrating this between the limits and 
assuming equally spaced points  

 gives the  
resulting quadrature: 
 

P(x) =
(x − x1)
x0 − x1

(x − x2)
x0 − x2

f(x0) +
(x − x0)
x1 − x0

(x − x2)
x1 − x2

f(x1) +
(x − x0)
x2 − x0

(x − x1)
x2 − x1

f(x2)

x2 = x1 + Δx = x0 + 2Δx

∫
b

a
f(x) dx ≈

Δx
3 (f(x0) + 4f(x1) + f(x2)) + O(Δx5)



Composite Simpson’s 3 point rule
Composite version of the single step rule, error now  because we 
have  sections each with error .


• Divide the interval into sections, approximate the area under each section 
using 3 points to define the quadratic fit, then add them up.


• If the sections are the same width  this gives 
 




• Python function exists for this!

∼ O(Δx4)
N ∼ 1/Δx ∼ O(Δx5)

Δx

∫
b

a
f(x) dx ≈

1
3

Δx [f(x0) + 4
n/2

∑
i=1

f(x2i−1) + 2
n/2−1

∑
i=1

f(x2i) + f(xn)] .



Gaussian quadrature rule
• As with interpolation, we can do better by locating the points at strategic 

locations that correspond to the zeros of certain polynomials.


• Gives an exact result for polynomials of degree 2n − 1 or less by a suitable 
choice of the nodes  and weights  for  
i = 1, ..., n. 
 




• Many different forms possible, see 
https://en.wikipedia.org/wiki/Gaussian_quadrature 

xi wi

I[ f ] = ∫
b

a
f(x) dx = ∑

i

wi f(xi)



Gaussian quadrature rule
e.g. for Gauss–Legendre quadrature


• The n points for the locations are the 
zeros of the Legendre polynomial 


• Weights given by 
 




• e.g. for 2 points the locations are 
 and the weights are 1.

Pn(x)

wi =
2

(1 − x2
i ) [P′￼n(xi)]2 .

x = ± 1/ 3



Integration - remarks on higher dimensions
The extension of these methods to 
higher dimensions is reasonably 
straightforward - we just integrate along 
one direction at each point in the other 
(there are simple algorithms for fixed 
spacings with weights that you can look 
up in wikipedia). 


For dimensions d > 7  these traditional 
numerical methods become inefficient 
and we need to use Monte Carlo 
methods - random sampling of the 
domain. These methods are commonly 
required in data analysis.



We will investigate all of these methods for integrating a function and compare 
them. 

In this week’s tutorial



Plan for today
1. What are we doing and why?


2. Interpolation of functions - given some points, give me a function that 
roughly fits the true one at all points in the interval


3. Integration of functions - given some points, estimate the area under the 
curve (also used to integrate in time as in the Euler method we have seen) 
 
Next week:


4. Differentiation of functions - given some points, estimate the local derivative 
of the function (we will do this next week, but have it in mind now!)


