Random Processes - 2023/24

Problem Sheet 8

The questions on this sheet are based on the material on the Poisson process from Week 8 and 9 lectures.

1. A 90 minute football match consisting of two 45 minutes halves takes place between two teams A and B. During the match, Team A makes shots at goal according to a Poisson process of rate $1 / 10$ per minute and Team B makes shots at goal according to a Poisson process of rate $1 / 12$ per minute. These Poisson processes are independent. Independently of all other events, each of Team A's shots results in a goal with probability $1 / 3$, and each of Team B 's shots results in a goal with probability $1 / 2$. We will write these processes as:

- $X_{A}(t)=$ number of shots at goal for team A in time $[0, t]$
- $X_{B}(t)=$ number of shots at goal for team B in time $[0, t]$
- $Y_{A}(t)=$ number of goals for team A in time $[0, t]$
- $Y_{B}(t)=$ number of goals for team B in time $[0, t]$
- $G(t)=$ total number of goals in time $[0, t]$
(a) What can you say about the process $(G(t): t \geqslant 0)$? Say which results from lectures you use in each step.
(b) What is the probability that Team A wins the match by 3 goals to 2 ?
(c) I arrive at the start of the match. What is the expectation of the time I wait before I see team A have a shot at goal?
(d) My friend arrives 10 minutes after the match has started. What is the expectation of the time she waits until she sees team A have a shot at goal?
(e) Suppose that there are exactly 4 goals in the match. What is the probability that more that half of them are scored in the first half?
(f) Translate the following information into a non-mathematical description of how the match developed:
- $X_{A}(1)=Y_{A}(1)=1$
- $X_{A}(45)=1, X_{B}(45)=0$
- $\min \left\{t: Y_{B}(t)=1\right\}=72$
- $X_{A}(90)-X_{A}(89)=2, Y_{A}(90)-Y_{A}(89)=0$
- $Y_{A}(90)=Y_{B}(90)=1$

2. Let $X(t)$ be a Poisson process of rate λ.
(a) What is $\mathbb{P}\left(T_{1} \leqslant u\right)$?
(b) Suppose that $n \geqslant 1$ and $0 \leqslant u \leqslant t$. Find $\mathbb{P}\left(T_{1} \leqslant u \mid X(t)=n\right)$?
(c) Comment on how changing λ changes the answers to parts (a) and (b).
(d) Show that for all $n \geqslant 1$ the probability density function of T_{1} conditioned on $X(t)=n$ is

$$
f_{T_{1} \mid X(t)=n}(u)=\frac{n}{t}\left(1-\frac{u}{t}\right)^{n-1} \quad \text { for } 0<u \leqslant t .
$$

3. Let T_{1}, T_{2}, \ldots be the arrival times of a Poisson process $X(t)$ of rate λ. Find the following:
(a) $\mathbb{E}\left(T_{1}+T_{2}+T_{3} \mid X(10)=3\right)$,
(b) $\mathbb{E}\left(T_{1}^{2} T_{2}^{2} T_{3}^{2} T_{4}^{2} \mid X(1)=4\right)$,
4. Requests arrive at a server as a Poisson process of rate λ per minute. Every T minutes the requests are processed regardless of how many there are (even if there are none). Suppose that processing costs $£ k$ (regardless of how many requests are processed). In addition each request incurs a cost of $£ c$ for each minute it waits before processing.
(a) Show that the expected cost per minute to run the server is $\frac{k}{T}+\frac{c \lambda T}{2}$. [Hint: First condition on there being n requests waiting at time T.]
(b) How should T be chosen to minimize the cost of running the server?
5. [Challenge Question] I arrive at a bus stop at a random time. What is the expected time I must wait for my bus under the following assumptions:
(a) I am in London, and the buses arrive according to a Poisson process with rate 6 per hour?
(b) I am in Zürich, and the buses are equally spaced in time, 10 minutes apart?

Notice that in each case the expected number of buses per hour is the same (it is 6 in each case).
How would you explain the difference in your answers to the two parts to a nonmathematician?

Some recent exam questions on the material in Week 9 include:

- Main Exam Period 2018. Question 6 (e,f)
- Main Exam Period 2019. Question 4(f)
- January 2020 Exam. Question 4
- January 2022 Exam. Question 3 (a-d), Question 4(b)
- January 2023 Exam. Question 2(c)

