The questions on this sheet are based on the material on the Poisson process from Week 8 and 9 lectures.

- 1. A 90 minute football match consisting of two 45 minutes halves takes place between two teams A and B. During the match, Team A makes shots at goal according to a Poisson process of rate 1/10 per minute and Team B makes shots at goal according to a Poisson process of rate 1/12 per minute. These Poisson processes are independent. Independently of all other events, each of Team A's shots results in a goal with probability 1/3, and each of Team B's shots results in a goal with probability 1/2. We will write these processes as:
 - $X_A(t)$ =number of shots at goal for team A in time [0,t]
 - $X_B(t)$ =number of shots at goal for team B in time [0,t]
 - $Y_A(t)$ =number of goals for team A in time [0, t]
 - $Y_B(t)$ =number of goals for team B in time [0,t]
 - G(t) =total number of goals in time [0, t]
 - (a) What can you say about the process $(G(t): t \ge 0)$? Say which results from lectures you use in each step.
 - (b) What is the probability that Team A wins the match by 3 goals to 2?
 - (c) I arrive at the start of the match. What is the expectation of the time I wait before I see team A have a shot at goal?
 - (d) My friend arrives 10 minutes after the match has started. What is the expectation of the time she waits until she sees team A have a shot at goal?
 - (e) Suppose that there are exactly 4 goals in the match. What is the probability that more that half of them are scored in the first half?

Random Processes Problem Sheet 8

(f) Translate the following information into a non-mathematical description of how the match developed:

- $X_A(1) = Y_A(1) = 1$
- $X_A(45) = 1, X_B(45) = 0$
- $\min\{t: Y_B(t) = 1\} = 72$
- $X_A(90) X_A(89) = 2$, $Y_A(90) Y_A(89) = 0$
- $Y_A(90) = Y_B(90) = 1$

2. Let X(t) be a Poisson process of rate λ .

- (a) What is $\mathbb{P}(T_1 \leq u)$?
- (b) Suppose that $n \ge 1$ and $0 \le u \le t$. Find $\mathbb{P}(T_1 \le u \mid X(t) = n)$?
- (c) Comment on how changing λ changes the answers to parts (a) and (b).
- (d) Show that for all $n \ge 1$ the probability density function of T_1 conditioned on X(t) = n is

$$f_{T_1|X(t)=n}(u) = \frac{n}{t} \left(1 - \frac{u}{t}\right)^{n-1}$$
 for $0 < u \le t$.

3. Let T_1, T_2, \ldots be the arrival times of a Poisson process X(t) of rate λ . Find the following:

- (a) $\mathbb{E}(T_1 + T_2 + T_3 \mid X(10) = 3),$
- (b) $\mathbb{E}(T_1^2 T_2^2 T_3^2 T_4^2 \mid X(1) = 4),$
- 4. Requests arrive at a server as a Poisson process of rate λ per minute. Every T minutes the requests are processed regardless of how many there are (even if there are none). Suppose that processing costs £k (regardless of how many requests are processed). In addition each request incurs a cost of £c for each minute it waits before processing.
 - (a) Show that the expected cost per minute to run the server is $\frac{k}{T} + \frac{c\lambda T}{2}$. [Hint: First condition on there being n requests waiting at time T.]
 - (b) How should T be chosen to minimize the cost of running the server?

Random Processes Problem Sheet 8

5. [Challenge Question] I arrive at a bus stop at a random time. What is the expected time I must wait for my bus under the following assumptions:

- (a) I am in London, and the buses arrive according to a Poisson process with rate 6 per hour?
- (b) I am in Zürich, and the buses are equally spaced in time, 10 minutes apart?

Notice that in each case the expected number of buses per hour is the same (it is 6 in each case).

How would you explain the difference in your answers to the two parts to a non-mathematician?

Some recent exam questions on the material in Week 9 include:

- Main Exam Period 2018. Question 6 (e,f)
- Main Exam Period 2019. Question 4(f)
- January 2020 Exam. Question 4
- January 2022 Exam. Question 3 (a-d), Question 4(b)
- January 2023 Exam. Question 2(c)

Robert Johnson r.johnson@qmul.ac.uk