2.

(a) The key point here is that for any s, t we have that $C(s+t)-C(s) \sim \operatorname{Po}\left(\frac{t}{2}\right)$.
(i) $\mathbb{P}(C(10)=3)=\mathbb{P}(C(10)-C(0)=3)=e^{-5} \frac{5^{3}}{3!}=\frac{125}{6 e^{5}}$
(ii)

$$
\begin{aligned}
\mathbb{P}(C(10)=3 \mid C(5)=0)= & \mathbb{P}(C(10)-C(5)=3 \mid C(5)-C(0)=0) \\
= & \mathbb{P}(C(10)-C(5)=3) \\
& \quad(\text { by property (ii) of the Poisson process) } \\
= & e^{-5 / 2} \frac{(5 / 2)^{3}}{3!} \\
= & \frac{125}{48 e^{5 / 2}}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\mathbb{P}(C(10)=3, C(5)=0) & =\mathbb{P}(C(10)-C(5)=3, C(5)-C(0)=0) \\
& =\mathbb{P}(C(10)-C(5)=3) \mathbb{P}(C(5)-C(0)=0) \\
& =e^{-5 / 2} \frac{(5 / 2)^{3}}{3!} e^{-5 / 2} \frac{(5 / 2)^{0}}{0!} \\
& =\frac{125}{48 e^{5}} .
\end{aligned}
$$

(iv) In a Poisson process we must have $C(s) \geqslant C(t)$ for all $s \geqslant t$. So

$$
\mathbb{P}(C(10)=0 \mid C(5)=3)=0
$$

(b) By the thinning Lemma (Lemma 7.3), customers who make a purchase arrive according to a Poisson process of rate $1 / 4$ per minute. Let
$B(t)=$ number of customers who make a purchase who arrive in the time interval $[0, t]$ Then $B(s+t)-B(s) \sim \operatorname{Po}\left(\frac{t}{4}\right)$.
(i) This asks for

$$
\mathbb{P}(B(10)=4)=e^{-10 / 4} \frac{(10 / 4)^{4}}{4!}=e^{-5 / 2} \frac{625}{384}
$$

(ii) Each of the first 3 customers has probability $1 / 2$ of making a purchase and for each one of them whether they make a purchase or not is independent of the other customers. So this probability is $(1 / 2)^{3}=1 / 8$.
(iii) This asks for $\mathbb{E}(B(600))$. We know that $B(600) \sim \operatorname{Po}(600 / 4)$. So

$$
\mathbb{E}(B(600))=600 / 4=150
$$

(c) If each customer spends 5 minutes in the shop then the customers present at time 1 hour are those who entered the shop in the interval [55,60]. The number of these has $\operatorname{Po}(5 / 2)$ distribution.
3.
(a) Let $H(t)$ be the number of Hammersmith and City Line trains arriving up to time t and $D(t)$ be the number of District Line trains arriving in time up to t. The total number of trains arriving up to time t is $U(t)=H(t)+D(t)$. Let $F(t)$ be the total number of full trains arriving up to time t.

The questions tells us that $H(t)$ is a Poisson process of rate 10 per hour, $D(t)$ is a Poisson process of rate 15 per hour, and these processes are independent. By Lemma 7.2 (superposition) we have that $U(t)$ is a Poisson process of rate $10+15=25$.
Let $F(t)$ be the number of full trains arriving up to time t. By Lemma 7.3 (thinning) we have that $F(t)$ is a Poisson process of rate $25 / 10=2.5$.
(b) Let $X(t)$ be the number of Hammersmith and City line trains which are not full which arrive up to time t. Similarly to part (a), we have $X(t)$ is a Poisson process of rate $10 \times 9 / 10=9$. To say that after 6 minutes, no Hammersmith and City line train which is not full has arrived means that $X(1 / 10)=0$. Now

$$
\mathbb{P}(X(1 / 10)=0)=e^{-\frac{9}{10}}=0.41 \quad \text { to } 2 \text { decimal places }
$$

So waiting this long happens around $2 / 5$ of the time.
4.
(a) We have

$$
\mathbb{P}(\text { no arrivals in }[0,1])=e^{-\lambda}
$$

and

$$
\mathbb{P}(\text { one arrival in }[0,1])=e^{-\lambda} \lambda .
$$

So if these are equal we have

$$
e^{-\lambda}=e^{-\lambda} \lambda
$$

which means $\lambda=1$.
(b) Similarly,

$$
\mathbb{P}(\text { two arrivals in }[0,1])=e^{-\lambda} \frac{\lambda^{2}}{2}
$$

so if $\mathbb{P}($ no arrivals in $[0,1])=\mathbb{P}($ two arrivals in $[0,1])$ we have

$$
e^{-\lambda}=e^{-\lambda} \frac{\lambda^{2}}{2}
$$

which means $\lambda=\sqrt{2}$.
(c)

$$
\mathbb{P}(\text { no arrivals in }[0,3])=e^{-3 \lambda}
$$

so if $\mathbb{P}($ no arrivals in $[0,1])=2 \mathbb{P}($ no arrivals in $[0,3])$ we have

$$
e^{-\lambda}=2 e^{-3 \lambda}
$$

Solving this (take logs and rearrange) we get $\lambda=\frac{\log 2}{2}$ (where log indicates natural logarithm).
(d)

$$
\mathbb{P}(\text { no arrivals in }[1,2])=e^{-\lambda}=\mathbb{P}(\text { no arrivals in }[0,1])
$$

So this equality holds for any λ. The condition gives us no information about the rate.
5.
(a) Let's take midnight to be time 0 and let

$$
X(t)=\text { the number of emails received up to time } t
$$

We will split \mathbb{R} into $D=\{t \in \mathbb{R}: 8 k \leqslant t \leqslant 18 k$, for some $k \in \mathbb{N}\}$ (times during the day 8 am to 6 pm) and $N=\mathbb{R} \backslash D$ (times during the night 6 pm to 8 am).
For a small interval of length h, the chance of receiving an email should be $3 h$ if the interval is in D and $0.2 h$ if the interval is in N. So we should change the infinitesimal definition to:

- for $t \in D$ let

$$
\mathbb{P}(X(t+h)=n \mid X(t)=m)= \begin{cases}3 h+o(h) & \text { if } n=m+1 \\ 1-3 h+o(h) & \text { if } n=m \\ o(h) & \text { if } n \geqslant m+2 \\ 0 & \text { if } n<m\end{cases}
$$

- and for $t \in N$ let

$$
\mathbb{P}(X(t+h)=n \mid X(t)=m)= \begin{cases}0.2 h+o(h) & \text { if } n=m+1 \\ 1-0.2 h+o(h) & \text { if } n=m \\ o(h) & \text { if } n \geqslant m+2 \\ 0 & \text { if } n<m\end{cases}
$$

(b) - If the interval $[s, s+t]$ is contained completely within D then the number of emails received during it has distribution $\mathrm{Po}(3 t)$.

- If the interval $[s, s+t]$ is contained completely within D then the number of emails received during it has distribution $\mathrm{Po}(0.2 t)$.
- If the interval $[s, s+t]$ has a of its length in D and b of its length in N then the number of emails received during it is the sum of a $\mathrm{Po}(3 a)$ randomv variable and an independent $\mathrm{Po}(0.2 b)$ random variable. So it has distribution $\mathrm{Po}(3 a+0.2 b)$.

Please let me know if you have any comments or corrections

Robert Johnson
r.johnson@qmul.ac.uk

