
Dr K Clough, Topics in Scientific computing, Autumn term 2023

Week 7: Parallelisation
Shared memory versus memory passing, race conditions and 
load balancing, jargon buster!



Plan for today
1. What is a supercomputer? (very basic definition!)


2. What is parallelisation? Human computer demo!


3. Paradigm 1: Shared memory parallelisation, “threads”, e.g. OpenMP


4. Paradigm 2: Message passing, “ranks/processes”, e.g. MPI, MPI4py


5. What problems can be parallelised?



Do not let people confuse you with their 
fancy computing words, parallel computing is  
(at least in principle) not complicated



Reasonable questions to ask
1. Can you draw out approximately the hardware design of the system, in terms 

of they layout of cores and how they are connected?


2. How many cores does this system have?


3. What is the memory? Is that per core, per processor or per node?


4. What parallelisation paradigm to you use? Why?


5. What is the main bottleneck in the calculation? Why?


6. Can you explain a bit more what you mean?



First, what is a computer?



Computers do operations on numbers

0 1 1 1

Memory

0 1 1 1

Core

1 0 0 01 0 0 0

Operate on 
number = e.g. 

add one
Processor



Computers with multiple cores can do operations on multiple numbers at the 
same time

0 1 1 1

Memory

0 1 1 1

Core

1 0 0 01 0 0 0

Operate on 
number = e.g. add 

one

0 1 1 1

Memory

0 1 1 1

Core

1 0 0 01 0 0 0

Operate on 
number = e.g. add 

one

Input/Output 

Shared memory

Processor

Processor



The computers you use every day!



So what is a supercomputer?



One of the supercomputers I use - MareNostrum in Barcelona 



One of the supercomputers I use - MareNostrum in Barcelona 



Many complicated sounding words for simple things

0 1 1 10 1 1 1

1 0 0 01 0 0 0

A node is a collection 
of processors, which 
contain one or more 
cores. 

GPUs (graphics 
processing units) 
have many cores per 
processor, whereas 
CPUs (central 
processing units) 
typically have 1-8).


A supercomputer has 
many nodes that 
communicate with 
each other with low 
latency (ie, fast).

0 1 1 10 1 1 1

1 0 0 01 0 0 0

0 1 1 10 1 1 1

1 0 0 01 0 0 0

0 1 1 10 1 1 1

1 0 0 01 0 0 0

Processor

0 1 1 10 1 1 1

1 0 0 01 0 0 0

0 1 1 10 1 1 1

1 0 0 01 0 0 0

0 1 1 10 1 1 1

1 0 0 01 0 0 0

0 1 1 10 1 1 1

1 0 0 01 0 0 0

Processor

Node



One of the supercomputers I use - MareNostrum in Barcelona 

e.g. This node has 12 
processors, each with 4 cores 

and a total of 8GB memory



Parallel demo: Euler again!
Consider a first order 

multi dimensional 
system




dyi

dt
= yi+1 − yi−1

yi(t = 0) = f(i) t

Y

y(t)

Δt

y(t+Δt)





dyi

dt
= yi+1 − yi−1

yi(t = 0) = f(i)

y_1 y_2 y_3 y_4 y_5 y_6

t=1 0 1 2 3 1 0

t=2 0 0

t=3 0 0

t=4 0 0

Parallel Euler





dyi

dt
= yi+1 − yi−1

yi(t = 0) = f(i)

y_1 y_2 y_3 y_4 y_5 y_6

t=1 0 1 2 3 1 0

t=2 0 2 2 -1 -3 0

t=3 0 0

t=4 0 0

Parallel Euler





dyi

dt
= yi+1 − yi−1

yi(t = 0) = f(i)

y_1 y_2 y_3 y_4 y_5 y_6

t=1 0 1 2 3 1 0

t=2 0 2 2 -1 -3 0

t=3 0 2 -3 -5 1 0

t=4 0 0

Parallel Euler





dyi

dt
= yi+1 − yi−1

yi(t = 0) = f(i)

y_1 y_2 y_3 y_4 y_5 y_6

t=1 0 1 2 3 1 0

t=2 0 2 2 -1 -3 0

t=3 0 2 -3 -5 1 0

t=4 0 0

Each variable is assigned one core. 

Volunteers to be the cores!


Parallel Euler



What happens if?

1. Now one core gets three more variables to work on? 


2. Now each core can call up some friends to help them?


3. Now each core only has one memory space to write in?


4. Now you can’t see the other core’s memory?


5. I want now the sum of all the variables?



Consider the case where:
1. One core is assigned all the variables (“primary thread”), but can call on its friend cores 

(“sub-thread”) to come and help. It has to organise things and tell them which variables to 
work on, which takes a bit of time (“overhead”).


2. The threads can see the memory of the neighbouring thread, so they don’t need to ask for 
their results


3. Each thread only has one memory space to write in, so they have to take care to avoid going 
out of sync  
(“race conditions”)


4. Global operations need to  
be done by one thread  
or coordinated between  
threads. 
 
This is multithreading /  
shared memory parallelisation.



Shared memory parallelisation / threading / 
multithreading
1. Work is split amongst sub-threads, which  

are forked by a primary thread. 

2. The sharing of memory is most efficient within one processor, and 
definitely can only be used within one node 

3. Most common library is OpenMP (= Open Multi Processing)


4. Python Global Interpreter Lock or GIL, is a lock that allows only one thread to 
hold the control of the Python interpreter. This means that only one thread 
can be in a state of execution at any point in time, and makes implementation 
of multithreading challenging in python. This may change in future.



Consider the case where:
1. Each core is given a rank and assigned a subset of the variables - we have to make 

sure they are fairly shared out (“load balancing”)


2. These ranks are not allowed to look at each other’s memory, they have to ask for the 
results (“message passing”)


3. We might like to add in some checks to  
make sure the communication worked - 
 “hey rank 2, did you get my message?" 
 (“send”/“receive")


4. Global operations need to be coordinated 
by one rank, usually rank 0  
(“reduce” / “gather” / “broadcast”) 
 
This is message passing / MPI parallelisation.



Message passing interface (MPI)
1. Work is split amongst processes, which are labelled by their rank. 

2. Each process may use one or more cores (if it has more than one core it can call these 
up and use multithreading- this is “hybrid parallelisation”)


3. The message passing communication  
can happen between processors  
and between nodes. It is extremely  
flexible.


4. Most compilers (e.g. gnu or Intel) contain 
an MPI library, that contains the  
necessary commands to get ranks to  
communicate. The python one is MPI4py.  
There is one called OpenMPI -  
don’t confuse this with OpenMP!



MPI4py - try it yourself!

What gets printed?




MPI4py - try it yourself!



MPI4py - try it yourself!

What gets printed?




MPI4py - try it yourself!



What problems can be parallelised?
1. Embarassingly parallel (yes people really say this and it is a thing)


2. Parallel with communication


3. Inherently serial

Can you think of examples of each of these?




What problems can be parallelised?
1. Embarassingly parallel (yes people really say this and it is a thing) 

 
-> Analysing multiple (uncoupled) data points using the same formula, 
refreshing the screen during a computer game…


2. Parallel with communication 
 
-> Solving coupled ODEs or PDEs where we divide the variables or positions 
amongst the processes, summing a large array of data…


3. Inherently serial 
 
-> Each operation depends on the next (e.g. constructing most Ikea 
furniture), many problems in cryptography…



Hardware versus parallelisation paradigm
1. Process


2. Core


3. OpenMPI


4. Rank


5. Thread


6. Processor


7. GPU


8. CPU


9. Node


10.OpenMP

Which are hardware words?


Which are words related to a parallelisation 
paradigm?


Which are related to message passing 
parallelisation?


Which are related to shared memory 
parallelisation?




Hardware versus parallelisation paradigm
1. Process


2. Core 

3. OpenMPI


4. Rank


5. Thread


6. Processor 

7. GPU 

8. CPU 

9. Node 

10.OpenMP

Hardware words




Hardware versus parallelisation paradigm
1. Process 

2. Core


3. OpenMPI 

4. Rank 

5. Thread 

6. Processor


7. GPU


8. CPU


9. Node


10.OpenMP

Words related to a parallelisation paradigm




Hardware versus parallelisation paradigm
1. Process 

2. Core


3. OpenMPI 

4. Rank 

5. Thread


6. Processor


7. GPU


8. CPU


9. Node


10.OpenMP

Related to message passing parallelisation




Hardware versus parallelisation paradigm
1. Process


2. Core


3. OpenMPI


4. Rank


5. Thread 

6. Processor


7. GPU


8. CPU


9. Node


10.OpenMP

Related to shared memory parallelisation




Plan for today
1. What is a supercomputer? (very basic definition!)


2. What is parallelisation? Human computer demo!


3. Paradigm 1: Shared memory parallelisation, “threads”, e.g. OpenMP


4. Paradigm 2: Message passing, “ranks/processes”, e.g. MPI, MPI4py


5. What problems can be parallelised?


