Week 7: Parallellsatl

ditions and

Plan for today

1. What is a supercomputer? (very basic definition!)
What is parallelisation? Human computer demo!
Paradigm 1: Shared memory parallelisation, “threads”, e.g. OpenMP

Paradigm 2: Message passing, “ranks/processes”, e.g. MPI, MPl4py

ok~ L Db

What problems can be parallelised?

Do not let people confuse you with their
fancy computing words, parallel computing is
(at least in principle) not complicated

Reasonable questions to ask

1.

o o &~ w0 b

Can you draw out approximately the hardware design of the system, in terms
of they layout of cores and how they are connected?

How many cores does this system have?

What is the memory? Is that per core, per processor or per node?
What parallelisation paradigm to you use? Why?

What is the main bottleneck in the calculation? Why?

Can you explain a bit more what you mean?

First, what is a computer?

Computers do operations on numbers

Core

Operate on
number = e.g.
add one
\J

y

0

Memory

1

1

Processor

Computers with multiple cores can do operations on multiple numbers at the
same time

Processor| wmweee

tjojogo < - Input/Output

Shared memory

Processor

The computers you use every day!

So what is a supercomputer?

One of the supercomputers | use - MareNostrum in Barcelona

One of the supercomputers | use - MareNostrum in Barcelona

MareNostrum4 (2017) System Architecture

MareNostrum is a supercomputer based on Intel Xeon Platinum processors, Lenovo SD530 Compute Racks, a
Linux Operating System and an Intel Omni-Path interconnection.

See below a summary of the general purpose cluster system:

Peak Performance of 11.15 Petaflops Interconnection networks:
384.75 TB of main memory 100Gb Intel Omni-Path Full-Fat Tree
3,456 nodes: 10Gb Ethernet

2x Intel Xeon Platinum 8160 24C at 2.1 Operating System: SUSE Linux Enterprise Server
GHz 12 P2

216 nodes with 12x32 GB DDR4-
2667 DIMMS (8GB/core)

3240 nodes with 12x8 GB DDR4-
2667 DIMMS (2GB/core)

Many complicated sounding words for simple things

Node

Processor

Processor

A node is a collection
of processors, which
contain one or more
cores.

GPUs (graphics
processing units)
have many cores per
processor, whereas
CPUs (central
processing units)
typically have 1-8).

A supercomputer has
many nodes that
communicate with
each other with low
latency (ie, fast).

One of the supercomputers | use - MareNostrum in Barcelona

MareNostrum4 (2017) System Architecture

MareNostrum is a supercomputer based on Intel Xeon Platinum processors, Lenovo SD530 Compute Racks, a
Linux Operating System and an Intel Omni-Path interconnection.

See below a summary of the general purpose cluster system:

Peak Performance of 11.15 Petaflops Interconnection networks:
384.75 TB of main memory 100Gb Intel Omni-Path Full-Fat Tree
3,456 nodes: 10Gb Ethernet

2x Intel Xeon Platinum 8160 24C at 2.1 Operating System: SUSE Linux Enterprise Server
GHz 12 P2

216 nodes with 12x32 GB DDR4- .
2667 DIMMS (8GB/core) e.g. This node has 12

3240 nodes with 12x8 GB DDR4- 4 ocessors, each with 4 cores

2667 DIMMS (2GB/core) and a total of 8GB memory

Parallel demo: Euler again!

Consider a first order
multl dimensional

system
dy; _
7 = Yir1 — Vi-1
vt =0) = (i)

YA

y(t+At)

At

Parallel Euler

y_1 y_2 y_3 y 4 y 5 y 6
t=1 0 1 2 3 1 0
t=2 0 0
t=3 0 0
t=4 0 0

Parallel Euler

y_1 y_2 y 3 y 4 y 5 y 6
t=1 0 1 2 3 1 0
t=2 0 2 2 -1 -3 0
t=3 0 0
t=4 0 0

Parallel Euler

y_1 y_2 y_3 y 4 y 5 y 6
t=1 0 1 2 3 1 0
t=2 0 2 2 -1 -3 0
t=3 0 2 -3 -5 1 0
t=4 0 0

Each variable is assigned one core.
Volunteers to be the cores!

Parallel Euler

y_1 y_2 y_3 y 4 y 5 y 6
t=1 0 1 2 3 1 0
t=2 0 2 2 -1 -3 0
t=3 0 2 -3 -5 1 0
t=4 0 0

What happens if?

1. Now one core gets three more variables to work on?
Now each core can call up some friends to help them?
Now each core only has one memory space to write in?

Now you can’t see the other core’s memory?

ok~ L Db

| want now the sum of all the variables?

Consider the case where:

1. One core is assigned all the variables (“primary thread”), but can call on its friend cores
(“sub-thread”) to come and help. It has to organise things and tell them which variables to
work on, which takes a bit of time (“overhead”).

2. The threads can see the memory of the neighbouring thread, so they don’t need to ask for
their results

3. Each thread only has one memory space to write in, so they have to take care to avoid going
out of sync
(“race conditions”)

4. Global operations need to
be done by one thread
or coordinated between
threads.

This is multithreading /
shared memory parallelisation.

Shared memory parallelisation / threading /
multithreading

1. Work is split amongst sub-threads, which
are forked by a primary thread.

2. The sharing of memory is most efficient within one processor, and
definitely can only be used within one node

3. Most common library is OpenMP (= Open Multi Processing)

4. Python Global Interpreter Lock or GIL, is a lock that allows only one thread to
hold the control of the Python interpreter. This means that only one thread
can be in a state of execution at any point in time, and makes implementation
of multithreading challenging in python. This may change in future.

Consider the case where:

1. Each core is given a rank and assigned a subset of the variables - we have to make
sure they are fairly shared out (“load balancing”)

2. These ranks are not allowed to look at each other’s memory, they have to ask for the
results (“message passing”)

3. We might like to add in some checks to '“
make sure the communication worked - d
“hey rank 2, did you get my message?"
(“send”/“receive")

4. Global operations need to be coordinated
by one rank, usually rank O
(“reduce” / “gather” / “broadcast”)

This is message passing / MPI parallelisation.

Message passing interface (MPI)

1. Work is split amongst processes, which are labelled by their rank.

2. Each process may use one or more cores (if it has more than one core it can call these
up and use multithreading- this is “hybrid parallelisation”)

3. The message passing communication
can happen between processors
and between nodes. It is extremely
flexible.

4. Most compilers (e.g. gnu or Intel) contain
an MPI library, that contains the
necessary commands to get ranks to
communicate. The python one is MPl4py.
There is one called OpenMPI -
don’t confuse this with OpenMP!

MPI4py - try it yourself!

0N U B

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

from mpidpy import MPI
import sys

note: This week I show you some optional content on parallelisation. You should first install MPI4py into your
environment, using:

#
#

#
#

#

conda activate myenv
conda install mpidpy

Then try running the following code — it must be run on the command line using (e.g. for 4 processes):

mpirun -n 4 python Week7MPIDemo.py

(Note that this code is run by each process, so imagine each person (process)
receiving this code and executing it independently.)

Find out who you are in the group of MPI processes

comm = MPI.COMM_WORLD
num_ranks = comm.Get_size()
my_rank = comm.Get_rank()

#

First just print off your rank

print("Hello, World! I am process " + str(my_rank) + " of "

+ str(num_ranks) + " on " + str(comm))

What gets printed?

o ~NO U B

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

MPIl4py - try it yourself!

from mpi4py import MPI
import sys

note: This week I show you some optional content on parallelisation. You should first install MPI4py into your

environment, using:

conda activate myenv
conda install mpidpy

Then try running the following code - it must be run on the command line using (e.g. for 4 processes):

mpirun -n 4 python Week7MPIDemo.py

(Note that this code is run by each process, so imagine each person (process)
receiving this code and executing it independently.)

Find out who you are in the group of MPI processes

comm = MPI.COMM_WORLD
num_ranks = comm.Get_size()
my_rank = comm.Get_rank()

First just print off your rank
print("Hello, World! I am process "

+ str(my_rank) + " of "
+ str(num_ranks) + "

on "

+ str(comm))

(myenv) katy@macadmins—MacBook—Pro Notebooks % mpirun -np 4 pythbn Week7MPIDemo.py

Hello, World!
Hello, World!
Hello, World!
Hello, World!

I

I
I
I

am
am
am
am

process
process
process
process

WNPREP OO

of 4
of 4
of 4
of 4

on
on
on
on

<mpi4py.MPI.Intracomm
<mpi4py.MPI.Intracomm
<mpi4py.MPI.Intracomm
<mpi4py.MPI.Intracomm

object
object
object
object

at 9x113f785d0>
at 0x1132335d0>
at 0x1174dab5de>
at 0x1173265d0>

MPIl4py - try it yourself!

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

Wait until everyone gets here before going forward
comm.Barrier()

This just makes sure the printing is done in the terminal before we move on
Otherwise the output gets mixed up (even though the program order is right)
sys.stdout.flush()

Now do some communication with the other ranks
message_value = my_rank
max_rank = num_ranks - 1
if my_rank ==
comm.send(message_value, dest = my_rank+1)
print("I am the first rank I have no message")

elif ((my_rank > @) and (my_rank < max_rank))
message_received = comm.recv()
print("I am rank " + str(my_rank) +
+ str(message_received))
comm.send(message_value, dest = my_rank+1)

with message

else :
message_received = comm.recv()
print("I am the last rank " + str(my_rank) +
+ str(message_received))

with message

What gets printed?

MPIl4py - try it yourself!

29 # Wait until everyone gets here before going forward

30 comm.Barrier()

31

32 # This just makes sure the printing is done in the terminal before we move on
33 # Otherwise the output gets mixed up (even though the program order is right)
34 sys.stdout.flush()

35

36 # Now do some communication with the other ranks

37 message_value = my_rank

38 max_rank = num_ranks - 1

39 1f my_rank == I am the first rank I have no message
40 comm.send(message_value, dest = my_rank+1) .

41 print("I am the first rank I have no message") I am rank 1 with messSage (4]

42 .

43 elif ((my_rank > @) and (my_rank < max_rank)) I am rank 2 Wlth message 1

44 message_received = comm.recv() I am the last rank 3 with message 2
45 print("I am rank " + str(my_rank) + " with message "

46 + str(message_received))

47 comm.send(message_value, dest = my_rank+1)

48

49 else :

50 message_received = comm.recv()

51 print("I am the last rank " + str(my_rank) + " with message "

57 + str(message_received))

|53

What problems can be parallelised?

1. Embarassingly parallel (yes people really say this and it is a thing)
2. Parallel with communication

3. Inherently serial

Can you think of examples of each of these?

What problems can be parallelised?

1. Embarassingly parallel (yes people really say this and it is a thing)

-> Analysing multiple (uncoupled) data points using the same formula,
refreshing the screen during a computer game...

2. Parallel with communication

-> Solving coupled ODEs or PDEs where we divide the variables or positions
amongst the processes, summing a large array of data...

3. Inherently serial

-> Each operation depends on the next (e.g. constructing most lkea
furniture), many problems in cryptography...

Hardware versus parallelisation paradigm

—h

© ©o N O O &> Db

. Process
Core Which are hardware words?
OpenMF Which are words related to a parallelisation
Rank paradigm?
Thread
Processor Which are related to message passing
GPU parallelisation?
CPU Which are related to shared memory
Node parallelisation?

10.0OpenMP

Hardware versus parallelisation paradigm

Process
Core
OpenMPI
Rank
Thread Hardware words
Processor

GPU
CPU

© © N oo 0o K~ 0 bh =

Node
10.0penMP

Hardware versus parallelisation paradigm

1. Process
. Core
. OpenMPI
. Rank

Words related to a parallelisation paradigm
. Processor

2

3

4

5. Thread
6

7. GPU
8. CPU
9. Node
10.0penMP

Hardware versus parallelisation paradigm

1. Process

2. Core

3. OpenMPI

4. Rank
5. Thread
6. Processor Related to message passing parallelisation
7. GPU

8. CPU

9. Node

10.0penMP

Hardware versus parallelisation paradigm

—h

. Process
Core
OpenMPI
Rank
Thread Related to shared memory parallelisation
Processor

GPU
CPU

© ©o N o o k&~ w N

Node
10.0penMP

Plan for today

1. What is a supercomputer? (very basic definition!)
What is parallelisation? Human computer demo!
Paradigm 1: Shared memory parallelisation, “threads”, e.g. OpenMP

Paradigm 2: Message passing, “ranks/processes”, e.g. MPI, MPl4py

ok~ L Db

What problems can be parallelised?

