Week 6: The bad news:
Ill conditioned and ill posed
problems

- Conditioning of i
of ODEs

well posedness

Feedback on feedback

* Mostly you seem happy, and personally | am very pleased with how you are
all approaching the module!

* On average there is the impression that lectures go too fast, and that people
feel they are only just keeping up - | will take this on board.

« Additional learning materials need work - | will adapt some from MTH5001.

* Whiteboard solutions/derivations would be useful somewhere - will record
some with my iPad in week 7 as | think it helps to see them done in real time.

« Good suggestion: Hints sheet for the solutions - tips on where to start if
totally lost as intermediate step to just looking at the solution.

Coursework announcement - equations and units

| have uploaded the ODE
equations to the
coursework page, plus
some hints about units
and initial conditions!

If you have questions
ask.

| strongly suggest
starting the coursework
in week 7.

The ODE for the x position of each star is:

Pz, <~ GM
pToa rz‘] cos(0)
j=lj#i U
and for the y position
j=N
@ GM; sin(6)
dt2 r2.

where

o iy = /(2 —)% + (yi — y5)?
o cosf = (x; — x;)/7ij

o sinf = (y; — v:)/rij

1)

2

Plan for today

1.

o k~ Db

Review of implicit integration methods, how to deal with non linear equations
In implicit methods

Solving Ax=b without inverting the matrix A
lll conditioned problems
Well posedness of ODEs

This week’s tutorial (today we will see this as we go)

Explicit versus implicit methods

An explicit method is one where the variable we want at the next step y, . ; can

be written explicitly in terms of quantities we know at the current step y,, 1,
e.g.

Vel =V +h f 1) “forward Euler - explicit”

Implicit methods will instead result in equations where we cannot easily isolate
and solve for the quantity we want,

e.g.

Viel = Ve + 0 f st tegt) “backward Euler - implicit”

The linear problem - C just contains numbers

Let’s call the matrix C, and assume that it has only positive eigenvalues, so:
d [x X
a bl ==<ll
dt y y
The backward Euler method with step size h is
Xer1 = X+ (= Cxiyy)
With a bit of matrix algebra can rearrange this so that:

Xk_l_l — (I+ hC)_lxk

The non linear problem - C contains f(x,y)

Consider the Van der Pol oscillator

dy ,
=2 2a(1 -y —+ 0
” () y=

How do we write this in matrix form?

The non linear problem - C contains f(x,y)

Consider the Van der Pol oscillator
d2
——2a 1 —y? —+ 0
” (1—=y9) y =
Decompose into 2 first order equations, then:
D=1 e B
dr vl |1 =2a(1 —y?)| v

But C contains functions of y, help!

The non linear problem - C contains f(x,y)

Consider the Van der Pol oscillator

11 el N I

The backward Euler method with step size h is

Xier1 = X + (= COG1 1) Xpyy)

Rearrange this so that:
Xy = T+ hC(q)

| can’t isolate x;_ ; ! What should | do?

Ilterate and hope for the best...

Algorithm:

Initially use the last value as a first try:

x8e O = (I + hCxp) ™ 'x

Now use this new guess as the value in the matrix and repeat:

xkg_lb_tiss(z) (I+hC(guess(z 1))) lxk

| stop when:

guess(i) guess(i—1)
B i | <e

Ilterate and hope for the best...

y_of_t_old = self._solution_y[:,itime-1]
y_of_t_old_matrix = np.matrix(y_of_t_old)

Remember we have to copy if we don't want to actually
amend the elements of y_of_t_old _matrix

y_of_t_guess = np.copy(y_of_t_old_matrix) \AJEB \A/ill see tf1i€5 ir] tf1€3

Implement the iterative scheme described in the lecture t[]t()rlfil,
error = 100.0

error_threshold = 1.0e-6

while (error > error_threshold)

Get the C matrix using the guess of y_new
C_matrix_t = self.get_C_matrix(y_of_t_guess)
I_plus_hC = np.eye(2) + h * C_matrix_t
I_plus_hC_inv = np.linalg.inv(I_plus_hC)

Get the new guess using the C matrix of the old one - \Alr]zit iE; tr]ea \/EilLJEB ()f 6; tr]Eit \AIEB
of_t_new = I_plus_hC_inv * y_of_t_old_matrix.transpose .
B i require here?

If the new guess is the same as the old one we have converged
error = np.linalg.norm(y_of_t_guess - y_of_t_new)
y_of_t_guess = y_of_t_new

Check it is not getting worse!
assert error < 1000.0, 'Non linear iterations not converging!'

Now (assuming it has converged) assign the

value we found to to solution and continue the time iteration
y_of_t_new_final = y_of_t_guess.transpose()
self._solution_y[:,itime] = y_of_t_new_final

Ilterate and hope for the best...

y_of_t_old = self._solution_y[:,itime-1]
y_of_t_old_matrix = np.matrix(y_of_t_old)

Remember we have to copy if we don't want to actually
amend the elements of y_of_t_old _matrix

y_of_t_guess = np.copy(y_of_t_old_matrix) \AJEB \A/ill sSee tf1i€5 ir] tf1€3

Implement the iterative scheme described in the lecture t[]t()rlfil,
error = 100.0

error_threshold = 1.0e-6
while (error > error_threshold

Get the C matrix using the guess of y_new
C_matrix_t = self.get_C_matrix(y_of_t_guess)
I_plus_hC = np.eye(2) + h * C_matrix_t . __(S
I_plus_hC_inv = np.linalg.inv(I_plus_hC) It IS]_()

Get the new guess using the C matrix of the old one

y_of_t_new = I_plus_hC_inv * y_of_t_old_matrix.transpose()

If the new guess is the same as the old one we have converged
error = np.linalg.norm(y_of_t_guess - y_of_t_new)
y_of_t_guess = y_of_t_new

Check it is not getting worse!
assert error < 1000.0, 'Non linear iterations not converging!'

Now (assuming it has converged) assign the

value we found to to solution and continue the time iteration
y_of_t_new_final = y_of_t_guess.transpose()
self._solution_y[:,itime] = y_of_t_new_final

Plan for today

. Solving Ax=b without inverting the matrix A
. lll conditioned problems

2
3
4. Well posedness of ODEs
5

. This week’s tutorial (today we will see this as we go)

Solving Ax=b without inverting A

* The equation Ax=b comes up a lot In
numerical methods!

e Not just in implicit integration of ODEs,
but also in fitting functions, ...

* As you will have seen last week,
inverting a large matrix is expensive -
naively the cost scales as NA2 but this
can be reduced to NlogN.

« Can we invert without inverting?

time to invert in seconds

—
<

[

(=]
|

~N

10"'3 B

— nhumpy
NliogN

10°

size of matrix

10°

Solving Ax=b without inverting A

* Method 2: Gauss Jordan elimination - covered in most linear algebra
courses, we won’t discuss more but it can be implemented as an algorithm

0 2 1 7 0 2 1
2smlic il s Dl Ol 9 2 -1 1
132 13 180

Many row operations later...

1 0 0|-5 =1 3|1
010/ -3 -1 22
00117 2. 4|3

Al x

A =

Solving Ax=b without inverting A

e Method 2: Iterative improvement - 1.1 ().2_ x|]
Algorithm —-03 1.9 []_

1. Choose a matrix A that is roughly equal to A, but that is easy to invert.

What could you choose in
this example?

Solving Ax=b without inverting A

« Method 2: Iterative improvement - 1.1 (),2_ [XI 1

Algorithm —()3 1.9_

1. Choose a matrix A that is roughly equal to A, but that is easy to invert.

We could choose for example

1.0 0.0
A, =
X [o.o 2.0]

Remember: The inverse of a
diagonal matrix just inverts
the elements

Solving Ax=b without inverting A

« Method 2: Iterative improvement - 1.1 ().2_ [x]
Algorithm —-03 1.9 B

1. Choose a matrix A that is roughly equal to A, but that is easy to invert.

2. Work out its inverse A I'and the difference between AA = A — A,

What would these be in our
example?

Solving Ax=b without inverting A

« Method 2: Iterative improvement - 1.1 ()2_ [X]

Algorithm — 03 1 .9_

1. Choose a matrix A, that is roughly equal to A, but that is easy to invert.

2. Work out its inverse A; ! and the difference between AA = A — A,
3. Plugging this into Ax=Db, we obtain the condition on the solution x that
x = A5 (b — AAx)

-> This suggests an iterative scheme x;, | = A, I(b — AAx)

Solving Ax=b without inverting A

 Method 2: Iterative improvement - 1,1 (),2- [

Algorithm —03 1.9_

We can write it as
xk_|_1 — ka + C

Where we define the residual matrix R = — AO_IAAO and ¢ = Ao_lb

How do we know if the iterations will converge?

Solving Ax=b without inverting A

Test for convergence
X1 =Ry, +c

Since

Xy =Rxy+c

Xy =R(Rxy+c)+c

n

x,=R'xy+(1+R+R”...

Rn—l) c

1.1 02
—03 1.9

—> R"—>0Qasn—> o

Solving Ax=b without inverting A

Theorem - 1.1 (),2_ [x] -
R"—>0asn—-> _—0.3 1.9_ yI
if and only if

p(R) < 1 where

p(R) = max | A, | (the maximum of the absolute values of the eigenvalues of
the matrix) is called the spectral radius of R

What can we do to try to make the spectral radius
of R small?

Solving Ax=b without inverting A

Theorem 11 02 H B
R"—>0asn— o _—0.3 1.9_ y|
if and only if

p(R) < 1 where

p(R) = max | A, | (the maximum of the absolute values of the eigenvalues of
the matrix) is called the spectral radius of R

R = —A;'AA, so we want to choose A to be close to A, so that the difference AA is small

Iterative improvement in the tutorial

ACTIVITY 2:

Inverting without inverting!

In the tutorial you will

In the lecture we discussed how to invert a matrix without using the python linalg.inv Im plement th I_S methOd
function by iterating from an initial guess. N COde for th IS SIM ple

Here you should implement an algorithm to invert the matrix we saw in the tutorial: matrIX.

LT 02 x| |1
-03 19 |y|] |2
e [0]
You can start with an initial guess xy = 1

You can implement this using functional methods or using classes, but your solutions
should:

error

1. Display the outputs at every iteration
2. Plot the decrease in the change between each iteration (using a matrix norm like
linalg.norm()) 107

3. Calculate and output the spectral radius of the residual matrix R 0 1 2 3 4 5 6
4. Stop once a certain level of accuracy is obtained - how many iterations are required to fteration

get an accuracy of 10742 How strongly does this depend on the initial guess?

Plan for today

. lll conditioned problems

“Problems with the problem”

2
3
4. Well posedness of ODEs
5

. This week’s tutorial (today we will see this as we go)

Problems with the problem

* We have already discussed problems with the methods used to solve ODEs,
but we have assumed, without much justification, that the problem itself can
always be solved in a satisfactory way, so long as we apply the right method.

 Bad news: real life is not so kind!
* We will now discuss 2 distinct problems:

* 1. lll conditioned problems - this is about the sensitivity of the solution to
small changes in the coefficients

« 2. lll posed problems - this is about whether an ODE (later we will see the
same for PDEs) actually has a solution, and whether the solution is unique

lll conditioned problems

* We have some equations (any equations - a polynomial, a matrix, an ODE...)
with parameters 4,.

The equations have solutions represented by k functions f,(4,).

The problem is said to be ill conditioned if small changes in A; result in large or
non smooth changes in f,(4;).

This doesn’t mean that the problem doesn’t have
a solution, so why is this an issue?

lll conditioned problems

* We have some equations (any equations - a polynomial, a matrix, an ODE...)
with parameters 4,.

The equations have solutions represented by k functions f,(4,).

The problem is said to be ill conditioned if small changes in A; result in large or
non smooth changes in f,(4;).

Numerically we will only every be able to represent A; with
finite precision, so if the solution changes wildly for a small
difference in the values, we won’t be able to trust it.

lll conditioned problems - test for Ax=b

* The condition number C tells us how much (using some norm) a small change in the
input parameters changes the solution:

1AM AL

771 | E— VA
* For a matrix equation Ax=b we will use the row-sum norm and we will see that:
AXx Ab
|Ax)]| - CII]| with C = IA|[IIA~"
| 151l

The matrix equation is ill conditioned if C > 10" where n is the number of
equations (usually the number of elements in x)

lll conditioned problems - test for Ax=b

e The row-sum norm of an m x n matrix is:

n

Al = max) |q
1<i<m =1

* |In words: for each row, compute the sum of the absolute values of the elements,
then take the maximum of these sums.

« Useful property of this norm: IAB|| < [||A||||B]|

lll conditioned problems - test for Ax=b

e The row-sum norm of an m x n matrix is:

n

Al = max) |q
1<i<m =1

* |In words: for each row, compute the sum of the absolute values of the elements,
then take the maximum of these sums.

« Useful property of this norm: IAB|| < [||A||||B]|

Why do | need this norm? Why can’t | just use the matrix entries?

lll conditioned problems - test for Ax=b

 Time for some matrix algebra! We perturb the input b by some Ab which gives
a change in the solution Ax:

Ax=0>b

— Ax+ Ax)=b+ Ab
—> A(Ax) = Ab

= Ax=A"'Ab

lll conditioned problems - test for Ax=b

» Time for some matrix algebra! We perturb the input b by some Ab which gives
a change in the solution Ax:

Ax = A~YAb plus the row sum norm inequality

= [|Ax|| = [A7"Ab|| < [[ATM]I]]AB

but also ||b|| = [|Ax|| < ||A]|||x]| so then

= [lAx||lIB]l < JAT I ABIAN]

Why do | need this norm? Why can’t | just use the matrix entries?

lll conditioned problems - test for Ax=b

* | need the norm so | can rearrange this equation, ie, divide through by the norm
values (which are just numbers - how would | divide by a matrix?!)

* Then
[Ax||[D]] < IATHAB| A]]x]]

ol el
o = ey Wt €= IANIATIL as stated before
X

gives

lll conditioned problems - test for Ax=b

* Example: -1 2 _ [X] — _ 4
2 3.999 7.999

L2 | [—3999 2000]

In the tutorial you will show that A = [2 3.999 ; 2000 1000

What is the condition number C = ||A||||A~"||?

Is A ill conditioned? (C > 10"

lll conditioned problems - test for Ax=b

* Example: 1 2 [X] —
2 3.999

|)

4
7.999

In the tutorial you will show that A =
Y [2 3.999

What is the condition number
C = ||A|[|JA7Y|?

] A_lzl

—3999 2000

2000

1000

The condition number is 5.999 x 5999 =

|

35988, which is bigger that 100 (10/2), so

Is A ill conditioned? (C > 107) ~ Y*s™ts

Iterative improvement in the tutorial

ACTIVITY 3

This activity is on checking ill conditioning in a matrix problem Ax = b.

Here you should implement an algorithm to check ill conditioned matrices and test it on the matrix problem we saw in
the lecture:

[; 3;99] [ch] B [7.;99]

You can implement this using functional methods or using classes, but your solutions should:

Have a function or method to calculate the row sum norm of a given matrix as defined in the lecture

Have a function or method to calculate the condition number C = || A||||A~!|| of a given matrix

Write a test function that gives an assert error when it detects an ill conditioned matrix

Test explicitly the effect of one or two examples of small changes in b on the solution x, and verify that they
respect the inequality

PN~

lAx)| lan)ll
< =224
=l = ¢ lall

In the tutorial you will
write code to solve the
above problem and
check the conditioning
of any matrix

Plan for today

1.

o k~ Db

Review of implicit integration methods, how to deal with non linear equations
In implicit methods

Solving Ax=b without inverting the matrix A
lll conditioned problems

“Problems with the problem”
Well posedness of ODEs

This week’s tutorial (today we will see this as we go)

Well posed problems

* An initial value problem is well posed if: | exist and

| am unique

* A solution exists

e The solution is unique

* The solution depends continuously on the initial data

What does it mean for a solution to not exist?
How could this happen?

Well posed problems - conditions for ODEs

* In general cases (PDEs) it is often not easy to diagnose whether an initial value
problem is well posed - many standard examples are solved, but others are not.

* For ODEs there is a condition that can be tested, and that is to check that the
function is Lipschitz continuous. Whilst it applies for ODEs of all dimensions,
we will focus here on the case with only dimension 1 for clarity, that is, the initial

value problem:

d
hod = f(y,?) defined on a subset of the reals D C R?

dt
D={ty |a<t<b, —oc0o<y<Loo}withyla) =«

Well posed problems - conditions for ODEs

» If the function f is continuous and satisfies a Lipschitz condition in the
variable y on the set D, then the initial value problem is well posed.

d
?y = f(y,t) defined on a subset of the reals D C R?
[

« What is a Lipschitz condition? If a finite constant L. > 0 exists such that:

[,) —fo, | S Ly, =y V(& yD, (@ y2) €D

We say that f satisfies a Lipschitz condition with Lipschitz constant L.

Well posed problems - conditions for ODEs

» If the function f is continuous and satisfies a Lipschitz condition in the
variable y on the set D, then the initial value problem is well posed.

d
Example 1: 7};=y—t2+1 0<r<2 y0)=0.5

o
Since a_y = 1V(t,y) then | f(y;, 1) —f(, | £ 1 X |y; — |

So f is Lipschitz continuous with L = 1 and so the initial value problem is well posed.

Well posed problems - conditions for ODEs

» If the function f is continuous and satisfies a Lipschitz condition in the
variable y on the set D, then the initial value problem is well posed.

. dy _ _
Example 2: i vyt y(ig)=a>0

withD = {(#,y) | 17 <t <T, — o0 Ly <L 0}

The inequality is unbounded as it can depend on vy, so there is no Lifshitz
condition. The initial value problem is ill posed.

Well posed problems - conditions for ODEs

» If the function f is continuous and satisfies a Lipschitz condition in the variable
y on the set D, then the initial value problem is well posed.

. dy _
Example 2: — =y y{t)=a>0
dt
* The problem here is that although y has a unique solution, it is unbounded and
2
breaks downat t =4/ — + tg
a

 If we restrict the time domain to less than this value of t, we are ok, but if we try to

cross it the solution (formulated as an initial value problem) will fail. We will see this
in the tutorial.

Well posed problems - conditions for ODEs

 What does the Lipschitz condition do for us?
|,) = f,)| S Ly, —y,| VY(@yD),(ty2) € D

We can show from this (via Grénwall’s inequality) that for any solutions x,(7), x,(¢) to
the ODE

|, () — %,(1) | < ™| x,(0) — x,(0) |

- If x;(0) = x,(0) this tells us that the solution is unique since the RHS is zero.
- If x;(0) = a, x,(0) = a + J it tells us that the solution changes by an amount that is
bounded by 0 el - this is the meaning of “depends continuously on the initial data”.

What other “well posed” condition have | not explicitly proved here?

Well posed problems - conditions for ODEs

 What does the Lipschitz condition do for us?
SO0 = f, O < Lly, =y, V(@,yD),#y2) € D

| haven’t proved existence of solutions, but it can also be derived (less
straightforwardly) from this condition. One needs to use Banach'’s fixed point
theorem, and this takes us away from the main points of the course, but do look

it up if you are interested!

Well posed problems in the tutorial

100

75 1

50 1

25 1

-~ numerical solution

analytic solution
time of breakdown

15 16 17

In the tutorial you will write
code to try to solve the
ODE example we
considered and show how
it breaks down

Well posed problems - very active area of
QMUL research!

RS CAlT REVIEWIESIIERS

Highlights Recent Accepted Collections Authors Referees Search Press About Editor

* QMUL Maths iS one Of the Well-Posedness of the Four-Derivative Scalar-Tensor Theory of
|eading p|aces for So|ving issues Gravity in Singularity Avoiding Coordinates

Llibert Aresté Salo, Katy Clough, and Pau Figueras

Of Wel | - posed ness | nm Od |f| ed Phys. Rev. Lett. 129, 261104 — Published 23 December 2022
g rav i ty t h eo ri eS ! Article References Citing Articles (6) Supplemental Material m HTML

We show that the most general scalar-tensor theory of gravity up to four derivatives in 3 + 1
Aro n KovaCS — R A o dimensions is well-posed in a modified version of the CCZ4 formulation of the Einstein equations in

o singularity-avoiding coordinates. We demonstrate the robustness of our new formulation in practice by
studying equal mass black hole binary mergers for different values of the coupling constants. Although
our analysis of well-posedness is restricted to cases in which the couplings are small, we find that in
simulations we are able to push the couplings to larger values, so that a certain weak coupling
condition is order one, without instabilities developing. Our Letter provides the means for such
simulations to be undertaken by the many numerical relativity codes that rely on the moving puncture
gauge to evolve black hole singularities.

Well-Posed Formulation of Scalar—Tensor Effective Field Theory
Aron D. Kovacs and Harvey S. Reall
Phys. Rev. Lett. 124, 221101

Summary of problems with problems

In principle:

» Before you start working on a problem, consider whether it could be ill posed or
il conditioned.

» Build checks into operations to look for ill conditioned matrices, etc
In practise:

 When something doesn’t work despite your best efforts, consider whether there
is a fundamental issue with what you are trying to do!

Plan for today

1.

o k~ Db

Review of implicit integration methods, how to deal with non linear equations
In implicit methods

Solving Ax=b without inverting the matrix A
lll conditioned problems

“Problems with the problem”
Well posedness of ODEs

This week’s tutorial (today we will see this as we go)

