
Dr K Clough, Topics in Scientific computing, Autumn term 2023

Week 6: The bad news:  
ill conditioned and ill posed 
problems
- Conditioning of linear systems and polynomials, well posedness 
of ODEs 



Feedback on feedback

• Mostly you seem happy, and personally I am very pleased with how you are 
all approaching the module!


• On average there is the impression that lectures go too fast, and that people 
feel they are only just keeping up - I will take this on board.


• Additional learning materials need work - I will adapt some from MTH5001.


• Whiteboard solutions/derivations would be useful somewhere - will record 
some with my iPad in week 7 as I think it helps to see them done in real time.


• Good suggestion: Hints sheet for the solutions - tips on where to start if 
totally lost as intermediate step to just looking at the solution.



Coursework announcement - equations and units

I have uploaded the ODE 
equations to the 
coursework page, plus 
some hints about units 
and initial conditions!


If you have questions 
ask. 


I strongly suggest 
starting the coursework 
in week 7.



Plan for today
1. Review of implicit integration methods, how to deal with non linear equations 

in implicit methods


2. Solving Ax=b without inverting the matrix A


3. Ill conditioned problems


4. Well posedness of ODEs


5. This week’s tutorial (today we will see this as we go)



Explicit versus implicit methods
An explicit method is one where the variable we want at the next step  can 
be written explicitly in terms of quantities we know at the current step ,  
e.g.


               “forward Euler - explicit”


Implicit methods will instead result in equations where we cannot easily isolate 
and solve for the quantity we want,  
e.g.


       “backward Euler - implicit”

yk+1
yk, tk

yk+1 = yk + h f(yk, tk)

yk+1 = yk + h f(yk+1, tk+1)



Let’s call the matrix C, and assume that it has only positive eigenvalues, so:





The backward Euler method with step size h is





With a bit of matrix algebra can rearrange this so that:


d
dt [x

y] = − C [x
y]

xk+1 = xk + h(−Cxk+1)

xk+1 = (I + hC)−1xk

The linear problem - C just contains numbers



Consider the Van der Pol oscillator 


 

d2y
dt2

− 2a(1 − y2)
dy
dt

+ y = 0

The non linear problem - C contains f(x,y)

How do we write this in matrix form?




Consider the Van der Pol oscillator 


 


Decompose into 2 first order equations, then:





But C contains functions of y, help!

d2y
dt2

− 2a(1 − y2)
dy
dt

+ y = 0

d
dt [y

v] = − [0 −1
1 −2a(1 − y2)] [y

v]

The non linear problem - C contains f(x,y)



Consider the Van der Pol oscillator 





The backward Euler method with step size h is





Rearrange this so that:


d
dt [y

v] = − [0 −1
1 −2a(1 − y2)] [y

v]

xk+1 = xk + h(−C(xk+1) xk+1)

xk+1 = (I + hC(xk+1))−1xk

The non linear problem - C contains f(x,y)

I can’t isolate  ! What should I do?
xk+1



Algorithm:


Initially use the last value as a first try:





Now use this new guess as the value in the matrix and repeat:


       


I stop when:


xguess(0)
k+1 = (I + hC(xk))−1xk

xguess(i)
k+1 = (I + hC(xguess(i−1)

k+1 ))−1xk

|xguess(i)
k+1 − xguess(i−1)

k+1 | < ϵ

Iterate and hope for the best…



Iterate and hope for the best…

What is the value of  that we 
require here?


ϵ

We will see this in the 
tutorial.




Iterate and hope for the best…

We will see this in the 
tutorial.


It is 10−6



Plan for today
1. Review of implicit integration methods, how to deal with non linear equations 

in implicit methods


2. Solving Ax=b without inverting the matrix A


3. Ill conditioned problems


4. Well posedness of ODEs


5. This week’s tutorial (today we will see this as we go)



Solving Ax=b without inverting A

• The equation Ax=b comes up a lot in 
numerical methods!


• Not just in implicit integration of ODEs, 
but also in fitting functions, …


• As you will have seen last week, 
inverting a large matrix is expensive - 
naively the cost scales as N^2 but this 
can be reduced to NlogN.


• Can we invert without inverting?



• Method 2: Gauss Jordan elimination - covered in most linear algebra 
courses, we won’t discuss more but it can be implemented as an algorithm

Many row operations later… 

A−1 x

A b

Solving Ax=b without inverting A



• Method 2: Iterative improvement


Algorithm 

1. Choose a matrix  that is roughly equal to , but that is easy to invert.
A0 A

[ 1.1 0.2
−0.3 1.9] [x

y] = [1
2]

What could you choose in 
this example?


Solving Ax=b without inverting A



• Method 2: Iterative improvement


Algorithm 

1. Choose a matrix  that is roughly equal to , but that is easy to invert.
A0 A

[ 1.1 0.2
−0.3 1.9] [x

y] = [1
2]

We could choose for example 





Remember: The inverse of a 
diagonal matrix just inverts 
the elements

A0 = [1.0 0.0
0.0 2.0]

Solving Ax=b without inverting A



• Method 2: Iterative improvement


Algorithm 

1. Choose a matrix  that is roughly equal to , but that is easy to invert.


2. Work out its inverse  and the difference between 


A0 A

A−1
0 ΔA = A − A0

[ 1.1 0.2
−0.3 1.9] [x

y] = [1
2]

What would these be in our 
example?


Solving Ax=b without inverting A



• Method 2: Iterative improvement


Algorithm 

1. Choose a matrix  that is roughly equal to , but that is easy to invert.


2. Work out its inverse  and the difference between 


3. Plugging this into Ax=b, we obtain the condition on the solution  that





-> This suggests an iterative scheme 

A0 A

A−1
0 ΔA = A − A0

x

x = A−1
0 (b − ΔAx)

xk+1 = A−1
0 (b − ΔAxk)

[ 1.1 0.2
−0.3 1.9] [x

y] = [1
2]

Solving Ax=b without inverting ASolving Ax=b without inverting A



• Method 2: Iterative improvement


Algorithm 

We can write it as





Where we define the residual matrix  and 

xk+1 = Rxk + c

R = − A−1
0 ΔA0 c = A−1

0 b

[ 1.1 0.2
−0.3 1.9] [x

y] = [1
2]

How do we know if the iterations will converge?


Solving Ax=b without inverting A



Test for convergence 




Since 








…


      

xk+1 = Rxk + c

x1 = Rx0 + c

x2 = R(Rx0 + c) + c

xn = Rnx0 + (1 + R + R2 . . . Rn−1) c ⟹ Rn → 0 as n → ∞

[ 1.1 0.2
−0.3 1.9] [x

y] = [1
2]

Solving Ax=b without inverting A



Theorem 




if and only if


 where


(the maximum of the absolute values of the eigenvalues of 
the matrix) is called the spectral radius of R

Rn → 0 as n → ∞

ρ(R) < 1

ρ(R) = max |λi |

[ 1.1 0.2
−0.3 1.9] [x

y] = [1
2]

What can we do to try to make the spectral radius 
of R small?


Solving Ax=b without inverting A



Theorem 




if and only if


 where


(the maximum of the absolute values of the eigenvalues of 
the matrix) is called the spectral radius of R

Rn → 0 as n → ∞

ρ(R) < 1

ρ(R) = max |λi |

[ 1.1 0.2
−0.3 1.9] [x

y] = [1
2]

 so we want to choose  to be close to , so that the difference  is smallR = − A−1
0 ΔA0 A0 A ΔA0

Solving Ax=b without inverting A



Iterative improvement in the tutorial
In the tutorial you will 
implement this method 
in code for this simple 
matrix.




Plan for today
1. Review of implicit integration methods, how to deal with non linear equations 

in implicit methods


2. Solving Ax=b without inverting the matrix A


3. Ill conditioned problems


4. Well posedness of ODEs


5. This week’s tutorial (today we will see this as we go)

{“Problems with the problem”



Problems with the problem

• We have already discussed problems with the methods used to solve ODEs, 
but we have assumed, without much justification, that the problem itself can 
always be solved in a satisfactory way, so long as we apply the right method.


• Bad news: real life is not so kind!


• We will now discuss 2 distinct problems:


• 1. Ill conditioned problems - this is about the sensitivity of the solution to 
small changes in the coefficients


• 2. Ill posed problems - this is about whether an ODE (later we will see the 
same for PDEs) actually has a solution, and whether the solution is unique



Ill conditioned problems

• We have some equations (any equations - a polynomial, a matrix, an ODE…) 
with parameters .


• The equations have solutions represented by  functions .


• The problem is said to be ill conditioned if small changes in  result in large or 
non smooth changes in . 

λi

k fk(λi)

λi
fk(λi)

This doesn’t mean that the problem doesn’t have 
a solution, so why is this an issue?




Ill conditioned problems

• We have some equations (any equations - a polynomial, a matrix, an ODE…) 
with parameters .


• The equations have solutions represented by  functions .


• The problem is said to be ill conditioned if small changes in  result in large or 
non smooth changes in . 

λi

k fk(λi)

λi
fk(λi)

Numerically we will only every be able to represent  with 
finite precision, so if the solution changes wildly for a small 
difference in the values, we won’t be able to trust it. 

λi



Ill conditioned problems - test for Ax=b

• The condition number C tells us how much (using some norm) a small change in the 
input parameters changes the solution:


 

• For a matrix equation Ax=b we will use the row-sum norm and we will see that:


    with  

The matrix equation is ill conditioned if  where n is the number of 
equations (usually the number of elements in x)

∥Δfk(λi)∥
∥fk(λi)∥

≤ C
∥Δλi)∥

∥λi∥

∥Δx)∥
∥x∥

≤ C
∥Δb)∥

∥b∥
C = ∥A∥∥A−1∥

C > 10n



Ill conditioned problems - test for Ax=b

• The row-sum norm of an m x n matrix is: 
 

            

• In words: for each row, compute the sum of the absolute values of the elements, 
then take the maximum of these sums.


• Useful property of this norm:          

∥A∥ = max
1≤i≤m

n

∑
j=1

|aij |

∥AB∥ ≤ ∥A∥∥B∥



Ill conditioned problems - test for Ax=b

• The row-sum norm of an m x n matrix is: 
 

            

• In words: for each row, compute the sum of the absolute values of the elements, 
then take the maximum of these sums.


• Useful property of this norm:          

∥A∥ = max
1≤i≤m

n

∑
j=1

|aij |

∥AB∥ ≤ ∥A∥∥B∥

Why do I need this norm? Why can’t I just use the matrix entries?




Ill conditioned problems - test for Ax=b

• Time for some matrix algebra! We perturb the input  by some  which gives 
a change in the solution : 
 
                   
 
                  
 
                  
 
                  
  
     

b Δb
Δx

Ax = b

⟹ A(x + Δx) = b + Δb

⟹ A(Δx) = Δb

⟹ Δx = A−1Δb



• Time for some matrix algebra! We perturb the input  by some  which gives 
a change in the solution : 
 
                   plus the row sum norm inequality 
 
                 
 
                but also  so then 
 
                
  
     

b Δb
Δx

Δx = A−1Δb

⟹ ∥Δx∥ = ∥A−1Δb∥ ≤ ∥A−1∥∥Δb∥

∥b∥ = ∥Ax∥ ≤ ∥A∥∥x∥

⟹ ∥Δx∥∥b∥ ≤ ∥A−1∥∥Δb∥∥A∥∥x∥

Ill conditioned problems - test for Ax=b

Why do I need this norm? Why can’t I just use the matrix entries?




• I need the norm so I can rearrange this equation, ie, divide through by the norm 
values (which are just numbers - how would I divide by a matrix?!)


• Then 
 
                
 
 

gives           with    as stated before 

     

∥Δx∥∥b∥ ≤ ∥A−1∥∥Δb∥∥A∥∥x∥

∥Δx)∥
∥x∥

≤ C
∥Δb)∥

∥b∥
C = ∥A∥∥A−1∥

Ill conditioned problems - test for Ax=b



Ill conditioned problems - test for Ax=b

• Example:  
  
     


In the tutorial you will show that 
A = [1 2
2 3.999], A−1 = [−3999 2000

2000 1000]
[1 2

2 3.999] [x
y] = [ 4

7.999]

What is the condition number ? 

Is A ill conditioned? ( )


C = ∥A∥∥A−1∥

C > 10n



Ill conditioned problems - test for Ax=b

• Example:  
  
     


In the tutorial you will show that 
A = [1 2
2 3.999], A−1 = [−3999 2000

2000 1000]
[1 2

2 3.999] [x
y] = [ 4

7.999]

What is the condition number 
? 

Is A ill conditioned? ( )


C = ∥A∥∥A−1∥

C > 10n

The condition number is 5.999 x 5999 = 
35988, which is bigger that 100 (10^2), so 
yes it is.




Iterative improvement in the tutorial

In the tutorial you will 
write code to solve the 
above problem and 
check the conditioning 
of any matrix




Plan for today
1. Review of implicit integration methods, how to deal with non linear equations 

in implicit methods


2. Solving Ax=b without inverting the matrix A


3. Ill conditioned problems


4. Well posedness of ODEs


5. This week’s tutorial (today we will see this as we go)

{“Problems with the problem”



Well posed problems

• An initial value problem is well posed if:


• A solution exists


• The solution is unique


• The solution depends continuously on the initial data

What does it mean for a solution to not exist? 
How could this happen?


I exist and  
I am unique



Well posed problems - conditions for ODEs

• In general cases (PDEs) it is often not easy to diagnose whether an initial value 
problem is well posed - many standard examples are solved, but others are not.


• For ODEs there is a condition that can be tested, and that is to check that the 
function is Lipschitz continuous. Whilst it applies for ODEs of all dimensions, 
we will focus here on the case with only dimension 1 for clarity, that is, the initial 
value problem: 
 

                     defined on a subset of the reals  
 
                   with 

dy
dt

= f(y, t) D ⊂ ℝ2

D = {(t, y) | a ≤ t ≤ b, − ∞ ≤ y ≤ ∞} y(a) = α



Well posed problems - conditions for ODEs

• If the function f is continuous and satisfies a Lipschitz condition in the 
variable y on the set D, then the initial value problem is well posed. 
 

                     defined on a subset of the reals 


• What is a Lipschitz condition? If a finite constant  exists such that: 
 
                     
 
We say that f satisfies a Lipschitz condition with Lipschitz constant L.

dy
dt

= f(y, t) D ⊂ ℝ2

L > 0

| f(y1, t) − f(y2, t) | ≤ L |y1 − y2 | ∀(t, y1), (t, y2) ∈ D



Well posed problems - conditions for ODEs

• If the function f is continuous and satisfies a Lipschitz condition in the 
variable y on the set D, then the initial value problem is well posed. 
 

    Example 1:             


Since  then  

 
So f is Lipschitz continuous with L = 1 and so the initial value problem is well posed.

dy
dt

= y − t2 + 1 0 ≤ t ≤ 2 y(0) = 0.5

∂f
∂y

= 1∀(t, y) | f(y1, t) − f(y2, t) | ≤ 1 × |y1 − y2 |



Well posed problems - conditions for ODEs

• If the function f is continuous and satisfies a Lipschitz condition in the 
variable y on the set D, then the initial value problem is well posed. 
 

    Example 2:              
 
                                  with 


• The inequality is unbounded as it can depend on y, so there is no Lifshitz 
condition. The initial value problem is ill posed.

dy
dt

= y2t y(t0) = α > 0

D = {(t, y) | t0 ≤ t ≤ T, − ∞ ≤ y ≤ ∞}



Well posed problems - conditions for ODEs

• If the function f is continuous and satisfies a Lipschitz condition in the variable 
y on the set D, then the initial value problem is well posed. 
 

    Example 2:            


• The problem here is that although y has a unique solution, it is unbounded and 

breaks down at  


• If we restrict the time domain to less than this value of t, we are ok, but if we try to 
cross it the solution (formulated as an initial value problem) will fail. We will see this 
in the tutorial.

dy
dt

= y2t y(t0) = α > 0

t =
2
α

+ t2
0



Well posed problems - conditions for ODEs
• What does the Lipschitz condition do for us?  

 
                     
 
We can show from this (via Grönwall’s inequality) that for any solutions  to 
the ODE 
 
                   
 
- If  this tells us that the solution is unique since the RHS is zero.  
- If  it tells us that the solution changes by an amount that is 
bounded by  - this is the meaning of “depends continuously on the initial data”.

| f(y1, t) − f(y2, t) | ≤ L |y1 − y2 | ∀(t, y1), (t, y2) ∈ D

x1(t), x2(t)

|x1(t) − x2(t) | ≤ eLt |x1(0) − x2(0) |

x1(0) = x2(0)
x1(0) = a, x2(0) = a + δ

δ eLt

What other “well posed” condition have I not explicitly proved here?




Well posed problems - conditions for ODEs
• What does the Lipschitz condition do for us?  
 
                     
 
I haven’t proved existence of solutions, but it can also be derived (less 
straightforwardly) from this condition. One needs to use Banach’s fixed point 
theorem, and this takes us away from the main points of the course, but do look 
it up if you are interested!

| f(y1, t) − f(y2, t) | ≤ L |y1 − y2 | ∀(t, y1), (t, y2) ∈ D



Well posed problems in the tutorial

In the tutorial you will write 
code to try to solve the 
ODE example we 
considered and show how 
it breaks down




Well posed problems - very active area of 
QMUL research!
• QMUL Maths is one of the 

leading places for solving issues 
of well-posedness in modified 
gravity theories!

Aron Kovacs   
“the well-posed  

guy”

Well-Posed Formulation of Scalar-Tensor Effective Field Theory

Áron D. Kovács and Harvey S. Reall


Phys. Rev. Lett. 124, 221101



Summary of problems with problems

In principle:


• Before you start working on a problem, consider whether it could be ill posed or 
ill conditioned.


• Build checks into operations to look for ill conditioned matrices, etc


In practise:


• When something doesn’t work despite your best efforts, consider whether there 
is a fundamental issue with what you are trying to do!



Plan for today
1. Review of implicit integration methods, how to deal with non linear equations 

in implicit methods


2. Solving Ax=b without inverting the matrix A


3. Ill conditioned problems


4. Well posedness of ODEs


5. This week’s tutorial (today we will see this as we go)

{“Problems with the problem”


