QUEEN MARY, UNIVERSITY OF LONDON

MTH6102: Bayesian Statistical Methods

Exercise sheet 6

2023-2024

This assignment counts for 4% of the module total. The deadline for submission is **Monday** the 13th November at 11am.

Submit the R code used as an R script file (with extension .R). But you need to write the answers in a separate file. This can be a Word document, pdf or a clearly legible image of hand-written work. So you need to submit two files.

The first two questions use a dataset on QMPlus.

- 1. (25 marks). For input data use the first column in the dataset, labelled **x**. Suppose that the observed data x_1, \ldots, x_n follow a normal distribution $N(\mu, \sigma^2)$, where σ is assumed to be known and equal to 2.
 - (a) Let the last two digits of your ID number be BC. As a prior distribution for μ , take a normal distribution $N(\mu_0, \sigma_0^2)$. We want the prior mean to be B+15 and the prior probability $P(\mu \leq C)$ to be 0.1. Find the prior parameters μ_0 and σ_0^2 that satisfy this.
 - (b) Using this prior distribution, find the posterior distribution for μ . (You may use the formulas)
 - (c) Calculate the posterior probability $P(\mu \leq 2)$.
 - (d) Calculate a 95% equal-tail credible interval for μ .
 - (e) Calculate a 95% HDP credible interval for μ
- 2. (30 marks). Suppose we observe iid data y_1, \ldots, y_n from Poisson distribution with parameter λ . Let λ have the Gamma(α, β) distribution, the conjugate prior distribution for the Poisson likelihood, where α and β are known prior parameters.
 - (a) Find the posterior distribution for λ . Now, an ecologist counts the numbers of centipedes in each of n=20 twenty one-metre-square quadrats. The numbers y_1, \ldots, y_{20} are in the second column labelled as y in the dataset.
 - (b) Let the last three digits of your ID number be ABC. Suppose we want the prior mean for λ to be 5 + A and the prior standard deviation to be 5 + B. Find the prior distribution parameters that satisfy this.
 - (c) Using the prior distribution from (b), find the posterior distribution for λ .
 - (d) Calculate the posterior median and a 95% credible interval for λ .

(e) Calculate the posterior median and a 95% credible interval for θ , where

$$\theta = 1 - \exp(-\lambda)$$
.

3. (45 marks). This question continues exercise sheet 5, question 4. Now there are two machines, each with a different precision of measurement, τ_1 and τ_2 . They each take a number of measurements with the same known mean $\mu = 1000$. The measurements are $x = (x_1, \ldots, x_m)$ on the first machine can be modelled as a random sample from a normal distribution with known mean $\mu = 1000$ and precision τ_1 and $y = (y_1, \ldots, y_n)$ on the second machine can be modelled as a random sample from a normal distribution with known mean $\mu = 1000$ and precision τ_2 .

The observed data are m = 10, $\sum_{i=1}^{m} (x_i - 1000)^2 = 0.12$, n = 8 and $\sum_{i=1}^{n} (y_i - 1000)^2 = 0.09$. Use independent gamma prior distributions for τ_1 and τ_2 with same parameters α and β as for τ in exercise sheet 5, that is $\alpha = 5$ and $\beta = 0.05$.

- (a) Find the joint posterior density of τ_1 and τ_2 .
- (b) What are the marginal posterior distributions for τ_1 and τ_2 ?
- (c) Using R, generate a sample of size 10,000 from the joint posterior density of τ_1 and τ_2 .

We are in fact interested in the standard deviations $\sigma_1 = \frac{1}{\sqrt{\tau_1}}$ and $\sigma_2 = \frac{1}{\sqrt{\tau_2}}$.

- (d) Use R to denerate samples from the posterior distributions of σ_1 and σ_2 , by transforming the τ_1, τ_2 samples that you generated in (c). (There is no need to work out on paper the posterior distributions of σ_1, σ_2 .)
- (e) Use R to find the posterior median and a 95% credible interval for each of σ_1 and σ_2 .
- (f) Using the samples of σ_1 and σ_2 that you generate in (d) estimate the difference in $d = \sigma_1 \sigma_2$ and the posterior probability that d < 0.