QUEEN MARY, UNIVERSITY OF LONDON
 MTH6102: Bayesian Statistical Methods

Exercise sheet 6
2023-2024

This assignment counts for 4% of the module total. The deadline for submission is Monday the 13 th November at 11am.

Submit the R code used as an R script file (with extension . R). But you need to write the answers in a separate file. This can be a Word document, pdf or a clearly legible image of hand-written work. So you need to submit two files.

The first two questions use a dataset on QMPlus.

1. (25 marks). For input data use the first column in the dataset, labelled x. Suppose that the observed data x_{1}, \ldots, x_{n} follow a normal distribution $N\left(\mu, \sigma^{2}\right)$, where σ is assumed to be known and equal to 2 .
(a) Let the last two digits of your ID number be $B C$.

As a prior distribution for μ, take a normal distribution $N\left(\mu_{0}, \sigma_{0}^{2}\right)$. We want the prior mean to be $B+15$ and the prior probability $P(\mu \leq C)$ to be 0.1 . Find the prior parameters μ_{0} and σ_{0}^{2} that satisfy this.
(b) Using this prior distribution, find the posterior distribution for μ. (You may use the formulas)
(c) Calculate the posterior probability $P(\mu \leq 2)$.
(d) Calculate a 95% equal-tail credible interval for μ.
(e) Calculate a 95% HDP credible interval for μ
2. (30 marks). Suppose we observe iid data y_{1}, \ldots, y_{n} from Poisson distribution with parameter λ. Let λ have the $\operatorname{Gamma}(\alpha, \beta)$ distribution, the conjugate prior distribution for the Poisson likelihood, where α and β are known prior parameters.
(a) Find the posterior distribution for λ.

Now, an ecologist counts the numbers of centipedes in each of $n=20$ twenty one-metre-square quadrats. The numbers y_{1}, \ldots, y_{20} are in the second column labelled as y in the dataset.
(b) Let the last three digits of your ID number be $A B C$. Suppose we want the prior mean for λ to be $5+A$ and the prior standard deviation to be $5+B$. Find the prior distribution parameters that satisfy this.
(c) Using the prior distribution from (b), find the posterior distribution for λ.
(d) Calculate the posterior median and a 95% credible interval for λ.
(e) Calculate the posterior median and a 95% credible interval for θ, where

$$
\theta=1-\exp (-\lambda) .
$$

3. (45 marks). This question continues exercise sheet 5 , question 4 . Now there are two machines, each with a different precision of measurement, τ_{1} and τ_{2}. They each take a number of measurements with the same known mean $\mu=1000$. The measurements are $x=\left(x_{1}, \ldots, x_{m}\right)$ on the first machine can be modelled as a random sample from a normal distribution with known mean $\mu=1000$ and precision τ_{1} and $y=\left(y_{1}, \ldots, y_{n}\right)$ on the second machine can be modelled as a random sample from a normal distribution with known mean $\mu=1000$ and precision τ_{2}.
The observed data are $m=10, \sum_{i=1}^{m}\left(x_{i}-1000\right)^{2}=0.12, n=8$ and $\sum_{i=1}^{n}\left(y_{i}-1000\right)^{2}=$ 0.09. Use independent gamma prior distributions for τ_{1} and τ_{2} with same parameters α and β as for τ in exercise sheet 5 , that is $\alpha=5$ and $\beta=0.05$.
(a) Find the joint posterior density of τ_{1} and τ_{2}.
(b) What are the marginal posterior distributions for τ_{1} and τ_{2} ?
(c) Using R, generate a sample of size 10,000 from the joint posterior density of τ_{1} and τ_{2}.
We are in fact interested in the standard deviations $\sigma_{1}=\frac{1}{\sqrt{\tau_{1}}}$ and $\sigma_{2}=\frac{1}{\sqrt{\tau_{2}}}$.
(d) Use R to denerate samples from the posterior distributions of σ_{1} and σ_{2}, by transforming the τ_{1}, τ_{2} samples that you generated in (c). (There is no need to work out on paper the posterior distributions of σ_{1}, σ_{2}.)
(e) Use R to find the posterior median and a 95% credible interval for each of σ_{1} and σ_{2}.
(f) Using the samples of σ_{1} and σ_{2} that you generate in (d) estimate the difference in $d=\sigma_{1}-\sigma_{2}$ and the posterior probability that $d<0$.
