ODEs For Stars

1 Form of the ODEs to solve

There are N stars, labelled by an index $i=1,2 \ldots N$.
The position of star i is $\left(x_{i}, y_{i}\right)$, its mass is M_{i}. The goal is to solve for the positions as functions of time, given some initial values of $\left(x_{i}(t=0), y_{i}(t=0)\right)$.

Notice that this is a $2 n d$ order $O D E$, so we need to apply what we learned in the course about dealing with higher order ODEs. This also means that our initial conditions will need to include the first derivatives $\left(\dot{x}_{i}(t=0), \dot{y}_{i}(t=\right.$ $0)$), as well as the positions themselves.

The ODE for the x position of each star is:

$$
\begin{equation*}
\frac{d^{2} x_{i}}{d t^{2}}=\sum_{j=1, j \neq i}^{j=N} \frac{G M_{j}}{r_{i j}^{2}} \cos (\theta) \tag{1}
\end{equation*}
$$

and for the y position

$$
\begin{equation*}
\frac{d^{2} y_{i}}{d t^{2}}=\sum_{j=1, j \neq i}^{j=N} \frac{G M_{j}}{r_{i j}^{2}} \sin (\theta) \tag{2}
\end{equation*}
$$

where

- $r_{i j}=\sqrt{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}}$
- $\cos \theta=\left(x_{j}-x_{i}\right) / r_{i j}$
- $\sin \theta=\left(y_{j}-y_{i}\right) / r_{i j}$

2 Units and initial conditions

If you set $G=1$, then you can work in units in which the masses of the stars are order 1 numbers, as are the values of $r_{i j}$ (roughly speaking you are choosing the length units to be equal to the mass units). You can also choose to make the star velocities $\dot{x}_{1}, \dot{x}_{2} \ldots$ order 1 numbers, in order to get orbital timescales of order 1 (roughly speaking you are choosing the length units to be equal to the time units). Note that what I call an order 1 number here is anything in the range from 0.1-10!

In some of the coursework you have to choose your own initial conditions - here you may need to do a bit of experimentation to get something that is sensible and has the behaviour that is asked for in the instructions.

