
5. Markov Processes and 
Multi-State Models
CHRIS SUTTON, OCTOBER 2023



multi-state [Markov] models
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where we are heading
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link to Random Processes module
This week we will introduce a different way of thinking about survival models
◦ modelling transitions between different states

◦ we will begin with the simplest form (2 states) to establish the methodology

◦ then introduce the multi-state models that are more applicable in practice

This methodology uses what statisticians call Markov processes
◦ the theory behind this is part of the Random Processes module MTH6141
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introducing the 2-state model
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2 states: projector lightbulb
consider a lightbulb age x since first fitted to projector

2 states   Working and Not Working

can only move in one direction W → N   this is a transition
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2 states: projector lightbulb
consider a lightbulb age x since first fitted to projector

the probability at age x that a bulb then Working will be Not Working at age x+t 
is governed by the age-dependant transition intensity  µx+t (t≥0)
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two key assumptions in this model

the probability of being in either state at some future 
date depends only on (i) age and (ii) the state 
currently occupied [the “Markov assumption”]

the probability of transition during time t≥0 is

 dtqx+t = µx+tdt + o(dt)
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transition probability in Markov process
 dtqx+t = µx+tdt + o(dt)
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for small time interval dt the 
transition probability is 
approximately proportional 
to the length of time with 
the constant being the 
transition intensity µx+t

the remainder term o(dt) is some 
function of the small time interval dt 
such that the p.d.f. fx(t) = o(dt) as t→0 

and  lim o(dt)  = 0
             dt

t→ 0



2 states: human life
consider a life age x,    2 states   Alive and Dead

the probability at age x that a life then Alive will be Dead at age x+t is governed 
by the transition intensity  µx+t (t≥0)
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Warning – 2 very different models here
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Week 2-4 and Week 5-6 models different

consider some population

lifetime of an individual in that population 
is a random variable T

that random variable has distribution 
function Fₓ(t) and survival function Sₓ(t)

we seek methods for estimating these 
functions often using the hazard or force 
of mortality

consider an individual

that individual may be in one of two states 
(e.g. alive and dead)

we seek to understand how they might 
move between the two states dependent 
on the transition intensity

as we move to models with >2 states the 
differences in this approach will be 
magnified
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Probabilities in the 2-state model
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t+dtpₓ
We begin with the survival probability t+dtpₓ 
◦ let us condition on the state occupied at x+t

by the Markov assumption:

P[surviving from x to x+t+dt] =

  P[alive at x+t] x P[survive from x+t to x+t+dt │alive at x+t]

  + P[dead at x+t] x P[survive from x+t to x+t+dt │dead at x+t]

   = tpₓ x P[survive from x+t to x+t+dt │alive at x+t]

      + tqₓ x P[survive from x+t to x+t+dt │dead at x+t]

    = tpx . dtpx+t   +   tqx . 0    =    tpx [1 –  µx+tdt - o(dt)] 
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from our 2nd 
model assumption

the 2nd term is 
nonsense and =0

considering the 2 
states at x+t



derivative of tpₓ
now separately, from the definition of a derivative we have

        d  tpx  =  t+dtpx – tpx

       dt                dt

        d  tpx  =          tpx [1 –  µx+tdt - o(dt)] – tpx         = - tpx µx+t -           o(dt)

       dt                           dt     dt

              = - tpx µx+t

15

lim
dt→0

lim
dt→0

lim
dt→0

this term is zero 
by the definition 
of o(dt)



leads to a familiar formula…

if    d  tpx  = - tpx µx+t

      dt

then

   tpx  =  exp  - ∫ µx+s ds
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why get excited about uncovering 
our ‘important formula’ again? It is 
because we have done it entirely 
within the Markov framework here

in Markov processes this is 
known as a “Kolmogorov 
forward equation”



2-state model statistics
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observations
We now consider the case where we have observed data which we assume 
comes from a 2-state model and are looking to derive statistics using this data

assume we observe N lives
◦ as we study these retrospectively we do not need to assume the observations are 

independent or even chosen at random

◦ we allow for censoring

let     x+ai = age at which observation of the ith life begins

and   x+bi = age at which observation of the ith life must cease if the life survives 

for i=1,2,…,N
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indicator variable
we define a random variable Di 
◦ Di = 1 if the ith life observed to die

◦ Di = 0 otherwise

Di is an indicator random variable – here it indicates death occurring

we define a second random variable Ti where x+Ti is the age at which the 
observation of the ith life ends
◦ Di = 0 → Ti = bi

◦ Di = 1 → ai < Ti < bi

◦ so the two variables Di and Ti are not independent
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waiting time
gives rise to a third variable, Vi the waiting time where

   Vi = Ti - ai 

which has a mixed distribution with a probability mass at  bi - ai
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(Di , Vi)
the pair (Di , Vi) form a statistic

meaning the outcome of our N observations can be seen as a sample (di,vi) 
taken from the distribution of (Di , Vi)

let fi(di,vi) be the joint distribution function of (Di , Vi)

it is easiest to write fi(di,vi) considering the two values for Di separately

  fi(di,vi) =  bi–aipx+ai  if di=0

    vipx+ai. µx+ai+vi  if di=1
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Demonstration
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See separate PDF on QM 
Plus site Demonstration 8



if the transition intensity is constant µ

then the joint distribution function is

   fi(di,vi) = exp(-µvi) µ

and the joint probability function of all (Di,Vi) is exp(-µv) µd

where d = ∑di (total number of deaths) and v = ∑vi (the total waiting time)

[if µx+t is a constant µ]
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actuarial notation alert

actuaries often call the observed waiting time v the

“central exposed to risk” and denote it   Eₓ
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2-state model MLE
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MLE for µ
with this arrangement and our probability distribution function, the maximum 
likelihood estimate for the transition intensity µ is quite straightforward

the likelihood function (of parameter µ; given observations for d and v) is

  L(µ; d,v) = exp(-µv).µd

which gives MLE µ of 

   µ = d

          v

it can be shown that asymptotically µ ~ Normal[µ, µ/E(v)]
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See separate PDF file 
Demonstration 9 on QM Plus 
for more details of this



application of this model and MLE
remember that to derive our probability function and MLE we have assumed 
that the transition intensity µx+t is a constant µ in our range for t
◦ this assumption is most likely to be reasonable if we keep t short
◦ generally for practical work we will have 0 ≤ t ≤ 1 
◦ that is we are assuming µx+t is constant between ages x and x+1 (for 1 year) 
◦ then we assume µ is an estimate of µx+½

we can then piece together these estimates µ at different ages x to get a 
function for µx 
◦ if we need to smooth this function for µx we can use a method called graduation 

which we’ll introduce later in this module

◦ we can then calculate survival probabilities using tpx = exp(-∫µx+sds)
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the general multi-state model
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general model
we can extend the 2-state model to any number of states

multi-state models are often suited to actuarial data sets
◦ pension fund membership

◦ health insurance premiums

◦ motor insurance claims and no-claims discounts

we observe:
◦ length of times between transitions (general case of vi)

◦ number of transitions of each type (general case of di)

◦ some states will allow two-way movements, others only one-way
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e.g. 3 state model
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model set-up
3 states:   H   S   D

4 transition intensities:   σ(t)   ρ(t)   µ(t)   υ(t)

useful to assume for short t, the transition intensities are all constants σ ρ µ υ

we can now look to establish the likelihood function L(σ, ρ, µ, υ)
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random variables

Random 
variable

definition Observed sample

Vi the waiting time of the ith life in state H vi  and v = ∑vi

Wi the waiting time of the ith life in state S wi and w = ∑wi

Si the number of H→ S transitions for the ith life si and s = ∑si

Ri the number of S→ H transitions for the ith life ri and r = ∑ri

Di the number of H→ D transitions for the ith life di and d = ∑di

Ui the number of S→ D transitions for the ith life ui and u = ∑ui
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likelihood function 
building on the work we did for the 2-state model we can see that the likelihood 
function is of the form

L(σ, ρ, µ, υ) = exp[-(µ+σ)v].exp[-(υ+ρ)w].µd.υu.σs.ρr

when taking log Likelihood this splits into the sum of 4 components (one for 
each of the parameters) of the form exp(-µd).µd etc.

then the four MLEs are 

    µ = d/v         υ = u/w         σ = s/v         ρ = r/w

we could show vector (σ, ρ, µ, υ) is asymptotically Normal with means σ, ρ, µ, υ 
but these estimators are not independent (as e.g. Di and Ui cannot both be 1)
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