Week 5: Matrices and implicit
methods for linear ODEs

- Matrices in pytho kwards Euler i linear systems




Coursework announcement - animation and
displaying results

| have uploaded an example animation with the Week 4 Tutorial Solutions,
but you do not have to use animation in the coursework.

Another nice method of seeing evolution is to use a series of snapshots.

as=0.05 t=96 M as=0.05 t=319M as=0.05 t=4159M




Coursework announcement - animation and
displaying results

| have uploaded an example animation with the Week 4 Tutorial Solutions,
but you do not have to use animation in the coursework.

How could you give a star a “tail”’? Investigate the parameter “alpha” that
changes the opacity of the line, noting that it can be a vector...

Sometimes pictures easier to share than movies so don’t discount them!



Plan for today

1. Motivation - revision of coupled linear ODEs and illustration of stiff functions
2. How to do linear algebra with python - Sympy versus Numpy

3. Solution - solving a stiff linear ODE system with an implicit method

4

. This week’s tutorial - matrices and harmonic oscillator solution with implicit
methods



Revision of coupled linear ODEs

Consider this simple first order dimension 2 linear ODE:
X =998x+ 1998y x(0) =1
y=—=999x — 1999y y(0) =0

How do | solve this equation (analytically)?



Revision of coupled linear ODEs

Recall that we can write a linear system of equations as a matrix equation
d [x] 1998 1998 [x]
dr 1Y —999 —1999]| LY

Find the eigenvalues 4; and their associated eigenvectors v;, then solution is

X = Z Aivl-e’?‘i and we determine the coefficients A; using the initial conditions

l



Revision of coupled linear ODEs

The two eigenvalues and their associated eigenvectors are

Ji=(=1000,— 1) = [‘11], [‘12] Why two?

SO solution is:

H _ [—2Ae—f+ —Be 10001

= and using the initial conditions A = -1 B =1
Y Ae~! + Be—1000t ]



Revision of coupled linear ODEs

The two eigenvalues and their associated eigenvectors are

L - _[-1] [-2
A =(-1000,—1) v [1][1]

What does this tell me (physically) about the solution?



Revision of coupled linear ODEs

The two eigenvalues and their associated eigenvectors are

L - _[-1] [-2
A =(-1000,—1) v [1][1]

Two modes, one with a very short timescale, one with
a much longer one (7 ~ 1/4)

Modes go in “opposite directions” for x and y



Revision of coupled linear ODEs

The two eigenvalues and their associated eigenvectors are

Ai=(=1000,—1) ;= [‘11] [

2.0 1

15 1

10 1

0.0 1

-0.5 1

-1.0 1

1=

0.0 0.2 04 0.6 0.8 10

Two modes, one with a very
short timescale, one with a

much longer one (z ~ 1/4)

Modes go in “opposite
directions” for x and y



The trouble with explicit solutions

Why will our explicit methods have trouble with this system?

20 —° Two modes, one with a very
15 short timescale, one with a
10 much longer one (7t ~ 1//1i)

0.0 1

Recall that we called these
“stiff’ systems

_05 4

-1.0 1

0.0 0.2 0.4 0.6 0.8 10



The trouble with explicit solutions for stiff systems

Let’s call the matrix C, and assume that it has only positive eigenvalues, so:

d [x x =
EH =‘CH (\

Why do | need it to only have
positive eigenvalues?

0.0 1

-0.5 ~

_10 4

0.0 0.2 04 0.6 0.8 10



The trouble with explicit solutions for stiff systems

Let’s call the matrix C, and assume that it has only positive eigenvalues, so:

d [x x =
EH =-c|y) (\

We assume the system is stable, so i
modes decay over time, therefore the
eigenvalues (noting the minus sign

0.0 1

-0.5 1

introduced above) need to be positive % @ o g8 da i



The trouble with explicit solutions for stiff systems

Let’s call the matrix C, and assume that it has only positive eigenvalues, so:

d X X 20 - —t
E[y]=_cly] 15-(\y

The forward Euler method with step size h is N

> 051

.xk_l_l = X + h(—ka) .

-0.5 1

_10 4

So we see that any Xx; is obtained from the initial ——
state x; by k applications of the matrix (/ — hC)

Xk — (I — hC)k.XO



The trouble with explicit solutions for stiff systems

Knowing that C is positive definite, this means that
it can be decomposed as

C=A"TAA (\

with A a diagonal matrix of the eigenvalues. z 051
A bit of matrix algebra gives: |

-0.5 ~

_10.

(I — hC)k —_ A_l(l — hA)kA | 0.0 02 04 06 08 10

t

Where do the A*s go? Remember that for matrices (AB)> = ABAB



The trouble with explicit solutions for stiff systems

Any x; is obtained from the initial state X, as:

x, = A~YI — hA)*Ax, =
If we want this to converge for all the elements of 10

the matrix we need that 2 05

|11 —h4,,.| <1

And so we need a step size h given by I T % ds 1
2

h<—— (which for A, ... = 1000 is very small compared to the other

max timescale in the problem of 1)



Plan for today

> W~

How to do linear algebra with python - Sympy versus Numpy

Solution - solving a stiff linear ODE system with an implicit method

This week’s tutorial - matrices and harmonic oscillator solution with implicit
methods



Linear algebra using Python

Q: When should we use sympy and when numpy/scipy?

from sympy import Matrix, pprint

C_matrix = Matrix([[998, 1998],[-999, -1999]])
C_inverse = C_matrix.inv()
eigenvalues_and_vectors = C_matrix.eigenvects()

print("The matrix is ")

pprint(C_matrix)

print("\n Its inverse is ")

pprint(C_inverse)

print("\n Eigenvalues and eigenvectors are ")
pprint(eigenvalues_and_vectors)

The matrix is

998 1998

[-999 -1999

Its inverse is
-1999  -999
1000 W
999 499

| 1000 00

Eigenvalues and_eigenvectors are

e [

import numpy as np

C_matrix = np.matrix([[998, 1998], [-999, -1999]1])

C_inverse = np.linalg.inv(C_matrix)

eigenvalues, eigenvectors = np.linalg.eig(C_matrix)

print("The matrix is ", C_matrix)
print("Its inverse is ", C_inverse)
print("Eigenvalues are ", eigenvalues)
print("Eigenvectors are ", eigenvectors)

The matrix is [[ 998 1998]
[ -999 -1999]]
Its inverse is [[-1.999 -1.998]
[ 0.999 0.998]]
Eigenvalues are [ -1. -1000.]
Eigenvectors are [[ 0.89442719 -0.70710678]
[-0.4472136 0.70710678] 1]



Linear algebra using Python

Sympy when we expect whole number answers, or symbolic math
For numerics, mostly use numpy or scipy

from sympy import Matrix, pprint

C_matrix = Matrix([[998, 1998],[-999, -1999]])

C_inverse = C_matrix.inv() import numpy as np

eigenvalues_and_vectors = C_matrix.eigenvects()

print("The matrix is ") C_matrix = np.ma’gr1x([[998, 19981, [-999, -1999]])
pprint (C_matrix) C_inverse = np.linalg.inv(C_matrix)

print("\n Its inverse is ") eigenvalues, eigenvectors = np.linalg.eig(C_matrix)

pprint(C_inverse) |
print("\n Eigenvalues and eigenvectors are ")

pprint(eigenvalues_and_vectors) print("The matrix is ", C_matrix)
The matrix is print("Its inverse is ", C_inverse)

(998 1998 print("Eigenvalues are ", eigenvalues)
e print("Eigenvectors are ", eigenvectors)

16 ‘Inverss is The matrix is [[ 998 1998]

[-1999  -999 [ -999 -1999]]

600 %os Its inverse is [[-1.999 -1.998]

[ 0.999 0.998]]
999 499 Eigenvalues are [ -1. -1000.]
| 1000 500 Eigenvectors are [[ 0.89442719 -0.70710678]

[-0.4472136 0.70710678]]

Eigenvalues and_eigenvectors are

g e




Sympy

For symbolic math and algebra. Useful for checking simple algebra, for more
advanced symbolic maths | recommend SageMath or Mathematica

from sympy import Matrix, pprint —

C_matrix = Matrix([[998, 1998], [-999, -1999]])
C_inverse = C_matrix.inv()
eigenvalues_and_vectors = C_matrix.eigenvects()

print("The matrix is ")

pprint(C_matrix)

print("\n Its inverse is ")

pprint(C_inverse)

print("\n Eigenvalues and eigenvectors are ")
pprint(eigenvalues_and_vectors)

The matrix is
998 1998

|-999 -1999

Its inverse is
-1999 -999

1000 500
999 499
| 1000 500

Eigenvalues and eigenvectors are

e [l Al

Usually import the whole class or
function you need. Can also do:

import sympy as sp
from sympy import Matrix, pprint

And use sp.function for less
frequently used functions



Sympy

For symbolic math and algebra. Useful for checking simple algebra, for more
advanced symbolic maths | recommend SageMath or Mathematica

from sympy import Matrix, pprint

Matrix is a class in sympy.

C_matrix = Matrix([[998, 1998],[-999, -1999]]) +—

e et ) Here we are instantiating an object
sty of the Matrix class - setting its

print("\n Its inverse is ")

g?irrf:}:'(&;ig\ilggisgﬂues and eigenvectors are ") attribUteS (baSica”y its Size and
entries) with the values given.

pprint(eigenvalues_and_vectors)

The matrix is
998 1998

|-999 -1999

Its inverse is
-1999 -999

1000 500
999 499
| 1000 500

Eigenvalues and eigenvectors are

e [l Al




Sympy

For symbolic math and algebra. Useful for checking simple algebra, for more
advanced symbolic maths | recommend SageMath or Mathematica

from sympy import Matrix, pprint

C_matrix = Matrix([[998, 1998], [-999, -1999]])

e e ) The Matrix class contains most of the
PorintiCastrin) methods you want for getting properties of
e N the matrix - its inverse, determinant,
e eigenvalues etc.
e Since they are methods (functions) and not
Its inverse is attributes we need the brackets after them ().
1000 500
% g Remember to think of these methods as
Eiscnelis g locbiecars v saying,
_(—mo. L Hl H] (—1- L H1 H]] “Hey C_matrix, give me your inverse!”




Sympy

For symbolic math and algebra. Useful for checking simple algebra, for more
advanced symbolic maths | recommend SageMath or Mathematica

from sympy import Matrix, pprint

C_matrix = Matrix([[998, 1998], [-999, -1999]])
C_inverse = C_matrix.inv()
eigenvalues_and_vectors = C_matrix.eigenvects()

print("The matrix is ")

pprint(C_matrix)

print("\n Its inverse is ")

pprint(C_inverse)

print("\n Eigenvalues and eigenvectors are ")

pprint(eigenvalues_and_vectors) ‘~_‘—-_‘—‘_‘—““‘—~—-_________-‘_~
The matrix is
998 1998

= pprint() is a useful function for printing off
Its inverse is sympy algebra in a nice way

[-1999  -999
1000 500
999 499

| 1000 500

Eigenvalues and eigenvectors are

e [l Al




Sympy

For symbolic math and algebra. Useful for checking simple algebra, for more
advanced symbolic maths | recommend SageMath or Mathematica

from sympy import Matrix, pprint

C_matrix = Matrix([[998, 1998], [-999, -1999]])
C_inverse = C_matrix.inv()
eigenvalues_and_vectors = C_matrix.eigenvects()

print("The matrix is ")

pprint(C_matrix)

print("\n Its inverse is ")

pprint(C_inverse)

print("\n Eigenvalues and eigenvectors are ")
pprint(eigenvalues_and_vectors)

The matrix is
998 1998

|-999 -1999

Its inverse is
-1999 -999

60 o0 Q: What is the 1 in the middle here?

Eigenvalues and eigenvectors ar

liee - [l Al




Sympy

Another example

4, =21, [5, 3, -3, =21, [5, -2, 2, =21, [5, -2, -3, 311)
)

it

N

1
1
1
1

Q: What is the 2 in the middle here?



Sympy

Another example

M= Matrix([[3, -2, 4, _2]r [5: 3, =3, _211 [51 =2, 2, _2]I [51 2y =5 311)

eigenvectors for each

repeated eigenvalue

Value of the eigenvalue This is the multiplicity of the eigenvalue (if we
have repeated eigenvalues, it is > 1)



Sympy

from sympy import symbols, Eq, Function, pprint

from sympy.solvers.ode.systems import dsolve_system ES)/[T]F))/ can solve ESirT]F)lEB

x = Function("x") ODEs, but usually prefers to
y = Function("y")

t = symbols("t") formulate them as a system of
st < I, S0, coupled algebraic expressions

solution = dsolve_system(my_equations)
pprint(solution[0] [0])
pprint(solution[@] [1])

-1000-t -t
- Ci-e - 2:Cz-e
-1000-t -t
Ci-e + C2-e

x(t)

y(t)



Sympy

Again here Function is a class
f i bols, Eq, F ion, i
From ey o tvers. ade symtons import duoLve systen tha_t Sympy uses to rep.rese”t
variables that are functions of

x = Function("x") |

- F t' (II II) .
¥ = synbols("th) another variable.
my_equations = [Eq(x(t).diff(t), 998xx(t) + 1998xy(t)), InStead Symb0| IS Used fOI‘ the

Eqly(t).diff(t), -999#x(t) - 1999y (t))] independent variable t.

solution = dsolve_system(my_equatiens)
pprint(solution[0] [0])
pprint(solution[@] [1])

-1000-t -t

- Cie - 2:Cave The Function class has a
-1000-t -t

Ci-e t Cave method that allows us to
differentiate the function

x(t)

y(t)



Sympy

from sympy import symbols, Eq, Function, pprint
from sympy.solvers.ode.systems import dsolve_system

x = Function("x")
y = Function("y")
t = symbols("t")

my_equations = [Eq(x(t).diff(t), 998%x(t) + 1998xy(t)),
Eq(y(t).diff(t), =999%x(t) - 1999%y(t))]

solution = dsolve_syste
pprint(solution[@] [0])
pprint(solution[@] [1])

equations)

Another class is Eq for an
equation LHS = RHS

-1000-t -t
- Ci-e - 2:Cz-e
-1000-t -t
Ci-e + C2-e

x(t)

y(t)

Eq (RHS, LHS)



Sympy

from sympy import symbols, Eq, Function, pprint
from sympy.solvers.ode.systems import dsolve_system

x = Function("x")
y = Function("y")
t = symbols("t")

my_equations = [Eq(x(t).diff(t), 998%x(t) + 1998xy(t)),
Eq(y(t).diff(t), =999%x(t) - 1999%y(t))]

solution = dsolve_system(my_equations)
pprint(solution[0] [0])
pprint(solution[@] [1])

-1000-t -t
- Ci-e - 2:Cz-e
-1000-t -t
Ci-e + C2-e

x(t)

y(t)

solution_with_ics = dsolve_system(my_equations, ics={x(0): 1, y(@): 0})
pprint(solution_with_ics[0][@])
pprint(solution_with_ics[0] [1])

-t -1000-t
2:e -e€

-t -1000-t
-e +e

x(t)

y(t)

Can also feed in the initial
conditions to dsolve_system()



Numpy and Scipy

Again numpy has a matrix
import numpy as np CIaSS (Sma” m')

C_matrix = np.matrix([[998, 1998], [-999, -1999]1])
C_inverse = np.linalg.inv(C_matrix)

eigenvalues, eigenvectors = np.linalg.eig(C_matrix) However, NOow mOSt Of the
Drint("Eigenvaties are *, Eigenvalles) eigenvalues or inverses live
print( Elgenvect[o[rs are ", e;genvectors) not as methOdS in the CIaSS,
Th trix i 998 1998 . .

[ -999 ~1099]] but instead as methods in the
Its inverse is [[-1.999 -1.998] . . .

[ 0.999 ©.998]] library of functions np.linalg.
Eigenvalues are [ -1. -1000.] :
Eigenvectors are [[ 0.89442719 -0.70710678] These functions eXpeCt to act

[-0.4472136 0.70710678]] . . 5
on objects of type “matrix”.



Numpy array versus matrix

import numpy as np

my_matrix = np.matrix([[2, 11, [-1, -2]11) Q: How do the return values differ?
my_array = np.array([[2, 1], [-1, -2]])

my_vector_matrix = np.matrix([3, 4])

my_vector_array = np.array([3, 4])

print(my_matrix)

2 1 print(my_matrixkx(-1))
[-1 -2]]

print(my_array)

print(my_arrayxx(-1.0))

<2 1]
[-1 -2]]

print(my_vector_matrix)

[[3 4]]

print(my_vector_array)

[3 4]



Numpy array versus matrix

import numpy as np

my_matrix = np.matrix([[2, 1], [-1, =2]])
my_array = np.array([[2, 1], [-1, -2]])
my_vector_matrix = np.matrix([3, 4])
my_vector_array = np.array([3, 4])

print(my_matrix)

[[ 2 1]

[-1 -2]]
print(my_array)

([ 2 1]

[-1 -2]]
print(my_vector_matrix)

[[3 4]]

print(my_vector_array)

[3 4]

Q: How do the return values differ?

rint(my_matrixkx(-1)) « ”
P y Proper

[[ 0.66666667 ©.33333333] matrix inverse

[-0.33333333 -0.66666667] ]

print(my_arrayxx(-1.0))
1/element for

([ 0.5 1. ]
each entry

[-1. -0.5]]



Numpy array versus matrix

import numpy as np

my_matrix = np.matrix([[2, 11, [-1, -211) Q: How do the return values differ?
my_array = np.array([[2, 1], [-1, -2]])
my_vector_matrix = np.matrix([3, 4])
my_vector_array = np.array([3, 4])

my_vector_array * my_vector_array
print(my_matrix)

([ 2 1]

(-1 —21] my_vector_matrix * my_vector_matrix

print(my_array)

([ 2 1]

[-1 -2]]
print(my_vector_matrix)

[[3 4]]

print(my_vector_array)

[3 4]



Numpy array versus matrix

import numpy as np i
my_matrix = np.matrix([[2, 11, [-1, -211) Q: How do the return values differ?
my_array = np.array([[2, 1], [-1, -2]])

my_vector_matrix = np.matrix([3, 4])

my_vector_array = np.array([3, 4])

D rint!( my_mat ) my_vector_array % my_vector_array Each entry In tu rn

array([ 9, 16]1)

[ [ 2 1] my_vector_matrix * my_vector_matrix
[_1 _2] ] ValueError Traceback (most recent call last)
/var/folders/p9/hydj_8nx5w3c8rkwjmgvty5re000gp/T/ipykernel_38788/567733534.py in

———-> 1 my_vector_matrix * my_vector_matrix

opt/homebrew/anaconda3/1lib, thon3.9/site-packages/num matrixlib/defmatrix. in
print(my_array) (ot /honebrew/an /ib/py packages/nunpy/ by
216 if isinstance(other, (N.ndarray, list, tuple)) :
217 # This promotes 1-D vectors to row vectors
[ [ 2 1] —--> 218 return N.dot(self, asmatrix(other))
219 if isscalar(other) or not hasattr(other, '__rmul__') :
[—1 —2] ] 220 return N.dot(self, other)

<__array_function__ internals> in (xargs, *kkwargs) N I t
ValueError: shapes (1,2) and (1,2) not aligned: 2 (dim 1) != 1 (dim @) ee O

L]
my_vector_matrix * my_vector_matrix.transpose() reSpeCt I I Iatrlx

[[3 4]] matrix([[25]1)
my_vector_matrix.transpose() * my_vector_matrix Shape rules

matrix([[ 9, 12],

print(my_vector_array) [12, 1611) and Ordering
[3 4]

print(my_vector_matrix)



Numpy array versus matrix

import numpy as np

my_matrix = np.matrix([[2, 11, [-1, -211) Q: How do the return values differ?
my_array = np.array([[2, 1], [-1, -2]])

my_vector_matrix = np.matrix([3, 4])

my_vector_array = np.array([3, 4])

my_vector_matrix + my_vector_matrix
print(my_matrix)

(12 1]
[-1 -2]] my_vector_array + my_vector_array

print(my_array)

([ 2 1]

[-1 -2]]
print(my_vector_matrix)

[[3 4]]

print(my_vector_array)

[3 4]



Numpy array versus matrix

import numpy as np i

my_matrix = np.matrix([[2, 11, [-1, -211) Q: How do the return values differ?

my_array = np.array([[2, 1], [-1, -2]])

my_vector_matrix = np.matrix([3, 4])

my_vector_array = np.array([3, 4]) ! i
my_vector_matrix + my_vector_matrix

print(my_matrix)

(2 1] matrix([[6, 8]])

[-1 -2]]

print(my_array) my_vector_array + my_vector_array
e array([6, 8])

print(my_vector_matrix)

|
m The samel!

print(my_vector_array)

[3 4]



Plan for today

3. Solution - solving a stiff linear ODE system with an implicit method

4. This week’s tutorial - matrices and harmonic oscillator solution with implicit
methods



Explicit versus implicit methods

An explicit method is one where the variable we want at the next step y, . ; can

be written explicitly in terms of quantities we know at the current step y,, 1,
e.g.

Vel =V +h f 1) “forward Euler - explicit”

Implicit methods will instead result in equations where we cannot easily isolate
and solve for the quantity we want,

e.g.

Viel = Ve + 0 f st tegt) “backward Euler - implicit”



Change in paradigm for implicit methods

dy ,
CA. —1
" y Ty

I

I

I

| What value here
) gives me a new

: " gradient that touches
, the first point

I

I

I

y(t=0)=1 y=1 @

>

t=1 {



Backward Euler’'s method

dy ,
= —1
7 y Ty

Too low!
7

7

Ynew ? ./

y(t — O) — 1 yl=1 @ pad IAyz(yr%ew_l_ynew_l) At

t=1 t




Backward Euler’'s method

Vnew ? ,’ Too high!

@y _ 2

dt // Ay ~ (yr%ew T Voew — 1) At

t=1 t



Backward Euler’'s method

y
d A
—= =y +y-1 g
dt ,” That’s roughly it!
Yew A Ay r G2 v —1) At

y(f=0)=1 y=1 @

t=1 t



Let’s solve our initial problem this way

Consider this simple first order dimension 2 linear ODE:

X =998x+ 1998y x(0) =1 3

y=—999x — 1999y y(0)=0 :|

This is using Euler’s forward
method with 400 points

1e70

-= ¥, Euler's method N= 401
y, Euler's method N= 401

0.0 0.2 0.4

0.6 0.8




Let’s solve our initial problem this way

Let’s call the matrix C, and assume that it has only positive eigenvalues, so:
d [x X
a b ==l
dt y y
The backward Euler method with step size h is
X1 = X + (= Cxpy )
With a bit of matrix algebra can rearrange this so that:
xk+1 — (I+ hC)_l.xk
So we see that any X, is obtained from the initial state x, by k applications of the matrix

x, = (I + hC)™*x,



Let’s solve our initial problem this way

Again, knowing that C is positive definite, this means that
it can be decomposed as

C=A"1AA

with A a diagonal matrix of the eigenvalues.

A bit of matrix algebra gives:
I+ hC)*=A"1T+ hA)*A

1

Now for convergence we need
1 + hi;

< 1forall 4,

But this is always the case since h and 4, are positive! Unconditional convergence!



Let’s solve our initial problem this way

This is using Euler’s backwards
method with 75 points

This seems too good
to be true!

What’s the catch?

2.0 1

15 1

10 A1

0.5 1

0.0 1

-1.0 1

- X, Euler's backward method N= 76

y, Euler's backward method N= 76

0.0

0.2

0.4

0.6 0.8 10




Let’s solve our initial problem this way

We had to invert a matrix to get
this solution. That is trivial for a 2x2
system, but for higher dimension
systems (that we we encounter
with PDEs) it is VERY costly.

Also we have only considered
linear systems, for a good reason!
Non linear systems will be harder
and will require iteration at each
time step (more next week)

- X, Euler's backward method N= 76

y, Euler's backward method N= 76

0.0

0.2

04

0.6 0.8 10




What about solve _ivp() ?

20 1

15 1

10 1

0.0 -

-1.0 A

— X, solve_ivp()
Yy, solve_ivp()

0.0

0.2

0.4

0.6

0.8 10

solve_ivp() detects the
stiff system and either
takes smaller steps
initially or switches to
another method
(LSODA rather than
RK45)



Plan for today

4. This week’s tutorial - matrices and harmonic oscillator solution with implicit
methods



Tutorial this week

ACTIVITY 1:

| have written a class below for integrating linear equations that implements the (explicit) forward Euler method using

matrix methods. Update it to include the (implicit) backwards Euler method. Be sure to add in asserts to sense check
what the class is doing.

The class is applied to the system we saw in the lectures:

X =998x + 1998y x(0) = 1

§=999x ~ 1999y 3(0) =0 Implement and test the

which can also be written as

<] [998 1998 [x backwards Euler
%[y]=[—999 —1999” ] method

y

Determine:

. What is the maximum step size we can take while still keeping the Forward Euler method stable?
. Is this consistent with the bounds we saw in the lecture?

. What step size do we need to take in order to keep the Backward Euler method stable?

. Is this consistent with the bounds we saw in the lecture?

. What step size do we need to take in order to render the Backward Euler method accurate?

a s WON =



Tutorial this week

ACTIVITY 2:
Now apply the integrator to the following coupled, second order harmonic oscillator system.

HINT You first need to think carefully about what dimension this needs to be, and how to cast it into first order matrix
form:

my X, = —kx; + k(x; — x1) = —2kx; + kx;
myXy = —kxy + k(x; — x3) = =2kxy + kx;

where k is the spring constant and m; and m, are the mass of the oscillators. Set the initial conditions as Ap p Iy it .to th e CO u p I ed

xi=1 % =0

. harmonic oscillator

Setk=1andm; =0.1andm, =10

# Integrator for the coupled harmonic oscillator

# UPDATE ME!
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ACTIVITY 3

Now we will try solving the systems with sympy. Below is the code for the lecture example. Update it to solve for the
coupled harmonic oscillator above, checking against your numerical solution. Is that equation stiff or not? How can you
tell?

# Solution of coupled linear equations using sympy

import sympy as sp
from sympy import symbols, Eq, Function, pprint, Matrix
from sympy.solvers.ode.systems import dsolve_system

# Compare the eigenvalue decomposition
C_matrix = Matrix([[998, 1998],[-999, -1999]])
C_inverse = C_matrix.inv()
eigenvalues_and_vectors = C_matrix.eigenvects() T t
print("\n The matrix is ") ry Ou Some Sympy
pprint(C_matrix)

print("\n Its inverse is ")

pprint(C_inverse)

print('\n Eigenvalues and eigenvectors are ")

pprint(eigenvalues_and_vectors)

# solve the linear system of ODEs
Function("x")
Function("y")
symbols("t")

X
Y
t

my_equations = [Eq(x(t).diff(t), 998kx(t) + 1998xy(t)),
Eq(y(t).diff(t), =999#x(t) - 1999%y(t))]
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ACTIVITY 4

Which is faster, sympy or numpy?
Generate an NxN matrix containing random integers both sympy and numpy.

Compute the inverse using both libraries and calculate the time taken to do this. Repeat this for a range of N and see
which one scales better - make a plot of your results. What do you conclude?

HINT Recall that we talked about timing functions in the Week 2 lecture.

. Compare the speed of
my_matrix = numpy.random.randint(low=0, high=10, size=[3,3]) Sym py and numpy in
print(my_matrix) inverting matrices

print(np.linalg.inv(my_matrix))

[[8 6 0]
[3 0 3]
[6 9 8]]
[[ 0.10714286 ©0.19047619 -0.07142857]
[ 0.02380952 -0.25396825 0.0952381 ]
[-0.10714286 0.14285714 0.07142857]]



