Week 5: Matrices and implicit methods for linear ODEs

- Matrices in python, backwards Euler method for linear systems

Dr K Clough, Topics in Scientific computing, Autumn term 2023

Coursework announcement - animation and displaying results

I have uploaded an example animation with the Week 4 Tutorial Solutions, but you do not have to use animation in the coursework.

Another nice method of seeing evolution is to use a series of snapshots.

Coursework announcement - animation and displaying results

I have uploaded an example animation with the Week 4 Tutorial Solutions, but you do not have to use animation in the coursework.

How could you give a star a "tail"? Investigate the parameter "alpha" that changes the opacity of the line, noting that it can be a vector...

Sometimes pictures easier to share than movies so don't discount them!

Plan for today

1. Motivation - revision of coupled linear ODEs and illustration of stiff functions
2. How to do linear algebra with python - Sympy versus Numpy
3. Solution - solving a stiff linear ODE system with an implicit method
4. This week's tutorial - matrices and harmonic oscillator solution with implicit methods

Revision of coupled linear ODEs

Consider this simple first order dimension 2 linear ODE:

$$
\begin{aligned}
& \dot{x}=998 x+1998 y \quad x(0)=1 \\
& \dot{y}=-999 x-1999 y \quad y(0)=0
\end{aligned}
$$

How do I solve this equation (analytically)?

Revision of coupled linear ODEs

Consider this simple first order dimension 2 linear ODE:

$$
\begin{aligned}
& \dot{x}=998 x+1998 y \quad x(0)=1 \\
& \dot{y}=-999 x-1999 y \quad y(0)=0
\end{aligned}
$$

Recall that we can write a linear system of equations as a matrix equation

$$
\frac{d}{d t}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
998 & 1998 \\
-999 & -1999
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Find the eigenvalues λ_{i} and their associated eigenvectors v_{i}, then solution is

$$
X=\sum_{i} A_{i} v_{i} e^{\lambda_{i}} \text { and we determine the coefficients } A_{i} \text { using the initial conditions }
$$

Revision of coupled linear ODEs

$\frac{d}{d t}\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{cc}998 & 1998 \\ -999 & -1999\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
The two eigenvalues and their associated eigenvectors are
$\lambda_{i}=(-1000,-1) \quad v_{i}=\left[\begin{array}{c}-1 \\ 1\end{array}\right],\left[\begin{array}{c}-2 \\ 1\end{array}\right] \quad$ Why two?
so solution is:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-2 A e^{-t}+-B e^{-1000 t} \\
A e^{-t}+B e^{-1000 t}
\end{array}\right]
$$

Revision of coupled linear ODEs

The two eigenvalues and their associated eigenvectors are

$$
\lambda_{i}=(-1000,-1) \quad v_{i}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right],\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

What does this tell me (physically) about the solution?

Revision of coupled linear ODEs

The two eigenvalues and their associated eigenvectors are

$$
\lambda_{i}=(-1000,-1) \quad v_{i}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right],\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

Two modes, one with a very short timescale, one with a much longer one ($\tau \sim 1 / \lambda_{i}$)

Modes go in "opposite directions" for x and y

Revision of coupled linear ODEs

The two eigenvalues and their associated eigenvectors are
$\lambda_{i}=(-1000,-1) \quad v_{i}=\left[\begin{array}{c}-1 \\ 1\end{array}\right],\left[\begin{array}{c}-2 \\ 1\end{array}\right]$

Two modes, one with a very short timescale, one with a much longer one ($\tau \sim 1 / \lambda_{i}$)

Modes go in "opposite directions" for x and y

The trouble with explicit solutions

Why will our explicit methods have trouble with this system?

Two modes, one with a very short timescale, one with a much longer one ($\tau \sim 1 / \lambda_{i}$)

Recall that we called these
"stiff" systems

The trouble with explicit solutions for stiff systems

Let's call the matrix C, and assume that it has only positive eigenvalues, so:

$$
\frac{d}{d t}\left[\begin{array}{l}
x \\
y
\end{array}\right]=-C\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Why do I need it to only have positive eigenvalues?

The trouble with explicit solutions for stiff systems

Let's call the matrix C , and assume that it has only positive eigenvalues, so:

$$
\frac{d}{d t}\left[\begin{array}{l}
x \\
y
\end{array}\right]=-C\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

We assume the system is stable, so modes decay over time, therefore the eigenvalues (noting the minus sign introduced above) need to be positive

The trouble with explicit solutions for stiff systems

Let's call the matrix C , and assume that it has only positive eigenvalues, so:

$$
\frac{d}{d t}\left[\begin{array}{l}
x \\
y
\end{array}\right]=-C\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

The forward Euler method with step size h is

$$
x_{k+1}=x_{k}+h\left(-C x_{k}\right)
$$

So we see that any x_{k} is obtained from the initial state x_{0} by k applications of the matrix $(I-h C)$

$$
x_{k}=(I-h C)^{k} x_{0}
$$

The trouble with explicit solutions for stiff systems

Knowing that C is positive definite, this means that it can be decomposed as
$C=A^{-1} \Lambda A$
with Λ a diagonal matrix of the eigenvalues.
A bit of matrix algebra gives:
$(I-h C)^{k}=A^{-1}(I-h \Lambda)^{k} A$

Where do the $A^{k} \mathrm{~s}$ go? Remember that for matrices $(A B)^{2}=A B A B$

The trouble with explicit solutions for stiff systems

Any x_{k} is obtained from the initial state x_{0} as:

$$
x_{k}=A^{-1}(I-h \Lambda)^{k} A x_{0}
$$

If we want this to converge for all the elements of the matrix we need that

$$
\left|1-h \lambda_{\max }\right|<1
$$

And so we need a step size h given by

$h<\frac{2}{\lambda_{\text {max }}}$
(which for $\lambda_{\max }=1000$ is very small compared to the other timescale in the problem of 1)

Plan for today

1. Motivation-revision of coupled linear ODEs and illustration of stiff functions
2. How to do linear algebra with python - Sympy versus Numpy
3. Solution - solving a stiff linear ODE system with an implicit method
4. This week's tutorial - matrices and harmonic oscillator solution with implicit methods

Linear algebra using Python

Q: When should we use sympy and when numpy/scipy?

```
from sympy import Matrix, pprint
C_matrix = Matrix([[998, 1998],[-999, -1999]])
C_inverse = C_matrix.inv()
eigenvalues_and_vectors = C_matrix.eigenvects()
print("The matrix is ")
pprint(C_matrix)
print("\n Its inverse is ")
pprint(C_inverse)
print("\n Eigenvalues and eigenvectors are ")
pprint(eigenvalues_and_vectors)
The matrix is
\(\left[\begin{array}{lc}998 & 1998 \\ -999 & -1999\end{array}\right]\)
Its inverse is
\(\left[\begin{array}{ll}-1999 & -999 \\ \frac{999}{1000} & \\ \hline 1000 & \frac{499}{500}\end{array}\right]\)
```



```
import numpy as np
C_matrix = np.matrix([[998, 1998], [-999, -1999]])
C_inverse = np.linalg.inv(C_matrix)
eigenvalues, eigenvectors = np.linalg.eig(C_matrix)
|
print("The matrix is ", C_matrix)
print("Its inverse is ", C_inverse)
print("Eigenvalues are ", eigenvalues)
print("Eigenvectors are ", eigenvectors)
The matrix is [[[ 998 1998]
    [ -999 -1999]]
Its inverse is [[-1.999 -1.998]
    [ 0.999 0.998]]
Eigenvalues are [ -1. -1000.]
Eigenvectors are [[ 0.89442719 -0.70710678]
    [-0.4472136 0.70710678]]
```


Linear algebra using Python

Sympy when we expect whole number answers, or symbolic math For numerics, mostly use numpy or scipy

from sympy import Matrix, pprint

C_matrix $=$ Matrix([[998, 1998],[-999, -1999]])
C_inverse = C_matrix.inv()
eigenvalues_and_vectors = C_matrix.eigenvects()
print("The matrix is ")
pprint(C_matrix)
print("\n Its inverse is ")
pprint(C_inverse)
print("\n Eigenvalues and eigenvectors are ") pprint(eigenvalues_and_vectors)

```
The matrix is
998 1998
-999 -1999]
```

$\left.\begin{array}{l}\text { Its inverse is } \\ {\left[\begin{array}{cc}-1999 & -999 \\ \frac{999}{1000} & \frac{500}{1000}\end{array}\right.} \\ \frac{509}{500}\end{array}\right]$

Eigenvalues and eigenvectors are
$\left[\left(\left[-1000,1,\left[\left[\begin{array}{l}-1 \\ 1\end{array}\right]\right]\right),\left(-1,1,\left[\left[\begin{array}{l}-2 \\ 1\end{array}\right]\right]\right)\right]\right.$

```
The matrix is [[[ 
```

The matrix is [[[
[-999 -1999]]
[-999 -1999]]
Its inverse is [[-1.999 -1.998]
Its inverse is [[-1.999 -1.998]
[0.999 0.998]]
[0.999 0.998]]
Eigenvalues are [-1. -1000.]
Eigenvalues are [-1. -1000.]
Eigenvectors are [[0.89442719 -0.70710678]
Eigenvectors are [[0.89442719 -0.70710678]
[-0.4472136 0.70710678]]

```
    [-0.4472136 0.70710678]]
```

```
import numpy as np
```

import numpy as np
C_matrix = np.matrix([[998, 1998], [-999, -1999]])
C_matrix = np.matrix([[998, 1998], [-999, -1999]])
C_inverse = np.linalg.inv(C_matrix)
C_inverse = np.linalg.inv(C_matrix)
eigenvalues, eigenvectors = np.linalg.eig(C_matrix)
eigenvalues, eigenvectors = np.linalg.eig(C_matrix)
|
|
print("The matrix is ", C_matrix)
print("The matrix is ", C_matrix)
print("Its inverse is ", C_inverse)
print("Its inverse is ", C_inverse)
print("Eigenvalues are ", èigenvalues)
print("Eigenvalues are ", èigenvalues)
print("Eigenvectors are ", eigenvectors)

```
print("Eigenvectors are ", eigenvectors)
```


Sympy

For symbolic math and algebra. Useful for checking simple algebra, for more advanced symbolic maths I recommend SageMath or Mathematica
from sympy import Matrix, pprint
C_matrix $=$ Matrix([[998, 1998],[-999, -1999]])
C_inverse = C_matrix.inv()
eigenvalues_and_vectors = C_matrix.eigenvects()
print("The matrix is ")
pprint(C_matrix)
print("\n Its inverse is ")
pprint(C_inverse)
print("\n Eigenvalues and eigenvectors are ")
pprint(eigenvalues_and_vectors)
The matrix is
$\left[\begin{array}{lc}998 & 1998 \\ -999 & -1999\end{array}\right]$
$\left[\begin{array}{ll}\text { Its inverse is } \\ \frac{-1999}{1000} & -999 \\ \frac{999}{1000} & \frac{499}{500}\end{array}\right]$

Eigenvalues and eigenvectors are
$\left[\left(\left[-1000,1,\left[\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right]\right),\left(-1,1,\left[\left[\begin{array}{c}-2 \\ 1\end{array}\right]\right]\right)\right]\right.$

Usually import the whole class or function you need. Can also do:

```
import sympy as sp
from sympy import Matrix, pprint
```

And use sp.function for less frequently used functions

Sympy

For symbolic math and algebra. Useful for checking simple algebra, for more advanced symbolic maths I recommend SageMath or Mathematica

Sympy

For symbolic math and algebra. Useful for checking simple algebra, for more advanced symbolic maths I recommend SageMath or Mathematica
from sympy import Matrix, pprint

C_matrix $=$ Matrix([[998, 1998],[-999, -1999]])
C_inverse = C_matrix.inv()
eigenvalues_and_vectors = C_matrix.eigenvects()
print("The matrix is ")
pprint(C_matrix)
print("\n Its inverse is ")
pprint(C_inverse)
print("\n Eigenvalues and eigenvectors are ") pprint(eigenvalues_and_vectors)
The matrix is
$\left[\begin{array}{lc}998 & 1998 \\ -999 & -1999\end{array}\right]$
$\left[\begin{array}{lc}\text { Its inverse is } \\ {\left[\begin{array}{ll}-1999 & -999 \\ \frac{999}{1000} & \frac{499}{500}\end{array}\right]}\end{array}\right.$

Eigenvalues and eigenvectors are
$\left.\left[\left(\left[\begin{array}{l}-1000, \\ 1,\end{array}\left[\begin{array}{l}-1 \\ 1\end{array}\right]\right]\right),\left(-1,1,\left[\begin{array}{c}-2 \\ 1\end{array}\right]\right]\right)\right]$

The Matrix class contains most of the methods you want for getting properties of the matrix - its inverse, determinant, eigenvalues etc.
Since they are methods (functions) and not attributes we need the brackets after them 0 .

Remember to think of these methods as saying,
"Hey C_matrix, give me your inverse!"

Sympy

For symbolic math and algebra. Useful for checking simple algebra, for more advanced symbolic maths I recommend SageMath or Mathematica

```
from sympy import Matrix, pprint
C_matrix = Matrix([[998, 1998],[-999, -1999]])
C_inverse = C_matrix.inv()
eigenvalues_and_vectors = C_matrix.eigenvects()
print("The matrix is ")
pprint(C_matrix)
print("\n Its inverse is ")
pprint(C_inverse)
print("\n Eigenvalues and eigenvectors are ")
pprint(eigenvalues_and_vectors)
The matrix is
\(\left[\begin{array}{lc}998 & 1998 \\ -999 & -1999\end{array}\right]\)
```

$\left[\begin{array}{ll}\text { Its inverse is } \\ \frac{-1999}{1000} & \frac{-999}{500} \\ \frac{999}{1000} & \frac{499}{500}\end{array}\right]$
Eigenvalues and eigenvectors are
$\left[\left(\left[\begin{array}{l}-1000,\end{array},\left[\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right]\right),\left(-1,1,\left[\left[\begin{array}{c}-2 \\ 1\end{array}\right]\right]\right)\right]\right.$

Sympy

For symbolic math and algebra. Useful for checking simple algebra, for more advanced symbolic maths I recommend SageMath or Mathematica

```
from sympy import Matrix, pprint
C_matrix = Matrix([[998, 1998],[-999, -1999]])
C_inverse = C_matrix.inv()
eigenvalues_and_vectors = C_matrix.eigenvects()
print("The matrix is ")
pprint(C_matrix)
print("\n Its inverse is ")
pprint(C_inverse)
print("\n Eigenvalues and eigenvectors are ")
pprint(eigenvalues_and_vectors)
The matrix is
\(\left[\begin{array}{lc}998 & 1998 \\ -999 & -1999\end{array}\right]\)
```

Its inverse is
$\left[\begin{array}{ll}-1999 & -999 \\ \frac{999}{1000} & 500 \\ \frac{499}{500} & \frac{499}{500}\end{array}\right]$

Q: What is the 1 in the middle here?

Eigenvalues and eigenvectors are
$\left[\left(-1000,1,\left[\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right]\right),\left(-1,1,\left[\left[\begin{array}{c}-2 \\ 1\end{array}\right]\right]\right)\right]$

Sympy

Another example

Q: What is the 2 in the middle here?

Sympy

Another example
$M=\operatorname{Matrix}([[3,-2,4,-2],[5,3,-3,-2],[5,-2,2,-2],[5,-2,-3,3]])$
pprint(M.eigenvects())

Value of the eigenvalue
This is the multiplicity of the eigenvalue (if we have repeated eigenvalues, it is >1)

Sympy

```
from sympy import symbols, Eq, Function, pprint
from sympy.solvers.ode.systems import dsolve_system
x = Function("x")
y = Function("y")
t = symbols("t")
my_equations = [Eq(x(t).diff(t), 998*x(t) + 1998*y(t)),
    Eq(y(t).diff(t), -999*x(t) - 1999*y(t))]
```

solution = dsolve_system(my_equations)
pprint(solution[0] [0])
pprint (solution [0] [1])

Sympy can solve simple ODEs, but usually prefers to formulate them as a system of coupled algebraic expressions
solution = dsolve_system(my_equations) pprint(solution[0] [0])
pprint(solution[0] [1])

```
            e-1000\cdott}-2\cdot\mp@subsup{C}{2}{}\cdot\mp@subsup{e}{}{-t
x(t) = - C C }\cdote\mp@code{e
y(t)}=\mp@subsup{C}{1}{}\cdot\mp@subsup{e}{}{-1000\cdott}+\mp@subsup{C}{2}{}\cdot\mp@subsup{e}{}{-t
```


Sympy

```
from sympy import symbols, Eq, Function, pprint
from sympy.solvers.ode.systems import dsolve_system
x = Function("x")
y = Function("y")
t = symbols("t")
my_equations = [Eq(x(t).diff(t), 998*x(t) + 1998*y(t)),
    Eq(y(t).diff(t), -999*x(t) - 1999*y(t))]
solution = dsolve_system(my_equations)
pprint(solution[0][0])
pprint(solution[0] [1])
    e
y(t)}=\mp@subsup{C}{1}{}\cdot\mp@subsup{e}{}{-1000\cdott}+\mp@subsup{C}{2}{}\cdot\mp@subsup{e}{}{-t
```

Again here Function is a class that sympy uses to represent variables that are functions of another variable.
Instead symbol is used for the independent variable t .

The Function class has a method that allows us to differentiate the function

Sympy

```
from sympy import symbols, Eq, Function, pprint
from sympy.solvers.ode.systems import dsolve_system
x = Function("x")
y = Function("y")
t = symbols("t")
my_equations = [Eq(x(t).diff(t), 998*x(t) + 1998*y(t)),
    Eq(y(t).diff(t), -999*x(t) - 1999*y(t))]
        *
solution = dsolve_system(my equations)
pprint(solution[0] [0])
pprint(solution[0] [1])
\(x(t)=-C_{1} \cdot e^{-1000 \cdot t}-2 \cdot C_{2} \cdot e^{-t}\)
\(y(t)=C_{1} \cdot e^{-1000 \cdot t}+C_{2} \cdot e^{-t}\)
```


Another class is Eq for an

 equation LHS = RHS
Sympy

```
from sympy import symbols, Eq, Function, pprint
from sympy.solvers.ode.systems import dsolve_system
x = Function("x")
y = Function("y")
t = symbols("t")
my_equations = [Eq(x(t).diff(t), 998*x(t) + 1998*y(t)),
    Eq(y(t).diff(t), -999*x(t) - 1999*y(t))]
solution = dsolve_system(my_equations)
pprint(solution[0] [0])
pprint(solution[0][1])
\(x(t)=-C_{1} \cdot e^{-1000 \cdot t}-2 \cdot C_{2} \cdot e^{-t}\)
\(y(t)=C_{1} \cdot e^{-1000 \cdot t}+C_{2} \cdot e^{-t}\)
```

solution_with_ics = dsolve_system(my_equations, ics=\{x(0): 1, $y(0): 0\}$) pprint(solution_with_ics[0][0])
pprint(solution_with_ics[0][1])

```
x(t)}=2\cdote.e-
-t -1000.t
y(t) = - e +e
```


Can also feed in the initial conditions to dsolve_system()

Numpy and Scipy

```
import numpy as np
C_matrix = np.matrix([[998, 1998], [-999, -1999]])
C_inverse = np.linalg.inv(C_matrix)
eigenvalues, eigenvectors = np.linalg.eig(C_matrix)
print("The matrix is ", C_matrix)
print("Its inverse is ", \overline{C_inverse)}
print("Eigenvalues are ", eigenvalues)
print("Eigenvectors are ", eigenvectors)
The matrix is [[[ 998 1998]
    [ -999 -1999]]
Its inverse is [[-1.999 -1.998]
    [ 0.999 0.998]]
Eigenvalues are [ [ -1. -1000.]
Eigenvectors are [[ 0.89442719 -0.70710678]
    [-0.4472136 0.70710678]]
```

Again numpy has a matrix class (small m!)

However, now most of the functions to get things like eigenvalues or inverses live not as methods in the class, but instead as methods in the library of functions np.linalg. These functions expect to act on objects of type "matrix".

Numpy array versus matrix

```
import numpy as np
my_matrix = np.matrix([[2, 1], [-1, -2]])
my_array = np.array([[2, 1], [-1, -2]])
my_vector_matrix = np.matrix([3, 4])
my_vector_array = np.array([3, 4])
print(my_matrix)
[[ [ 2 1]
    [-1 -2]]
print(my_array)
[[[ 2 1]
    [-1 -2]]
[[3 4]]
print(my_vector_array)
[3 4]
```

```
print(my_vector_matrix)
```

```
print(my_vector_matrix)
```

Q: How do the return values differ?
print(my_matrix**(-1))
print(my_array**(-1.0))

Numpy array versus matrix

```
import numpy as np
my_matrix = np.matrix([[2, 1], [-1, -2]])
my_array = np.array([[2, 1], [-1, -2]])
my_vector_matrix = np.matrix([3, 4])
my_vector_array = np.array([3, 4])
print(my_matrix)
[[ [ 2 1]
    [-1 -2]]
print(my_array)
[[[ 2 1]
    [-1 -2]]
print(my_vector_matrix)
[[3 4]]
print(my_vector_array)
[3 4]
```

Q: How do the return values differ?

```
print(my_matrix**(-1))
    [[[ 0.66666667 0.33333333]
    [[ 0.66666667 0.33333333]}[\begin{array}{c}{[-0.33333333}
"Proper"
matrix inverse
print(my_array**(-1.0))
[[ 0.5 1. ]
1/element for
    each entry
    [-1. -0.5]]
```


Numpy array versus matrix

```
import numpy as np
my_matrix = np.matrix([[2, 1], [-1, -2]])
my_array = np.array([[2, 1], [-1, -2]])
my_vector_matrix = np.matrix([3, 4])
my_vector_array = np.array([3, 4])
print(my_matrix)
[[ [ 2 1]
    [-1 -2]]
print(my_array)
[[[ 2 1]
    [-1 -2]]
print(my_vector_matrix)
[[3 4]]
print(my_vector_array)
[3 4]
```

Q: How do the return values differ?

```
my_vector_array * my_vector_array
```

my_vector_matrix * my_vector_matrix

Numpy array versus matrix

```
import numpy as np
my_matrix = np.matrix([[2, 1], [-1, -2]])
my_array = np.array([[2, 1], [-1, -2]])
my_vector_matrix = np.matrix([3, 4])
my_vector_array = np.array([3, 4])
print(my_matrix)
[[ [ 2 1]
    [-1 -2]]
print(my_array)
[[[ 2 1]
    [-1 -2]]
print(my_vector_matrix)
[[3 4]]
print(my_vector_array)
[3 4]
```

Q: How do the return values differ?

```
my_vector_array * my_vector_array
array([ 9, 16])
```

Each entry in turn

```
my_vector_matrix * my_vector_matrix
```

Valuerror
/var/folders/p9/hydj_8nx5w3c8rkwjmgvty5 r0000gp/T/ipykernel_38788/567733534.
----> 1 my_vector_matrix * my_vector_matrix
/opt/homebrew/anaconda3/lib/python3.9/site-packages/numpy/matrixlib/defmatrix.py in -me
${ }_{217}^{216}$ if isinstance(other, (N. ndarray, list, tuple))
217 \# This promotes 1-D vectors to row vector
$\rightarrow \begin{array}{r}218 \\ 219\end{array} \quad \begin{array}{r}\text { return N.dot(self, asmatrix (other)) } \\ \text { is } \\ \text { iscalar(other) or not hasattr(other }\end{array}$
$219 \quad$ if $\begin{gathered}\text { isscalar(other) or not has } \\ \text { return N.dot(self, other) }\end{gathered}$
$220 \quad 1$
<__array_function_ internals> in dot(*args, **kwargs)
ValueError: shapes $(1,2)$ and $(1,2)$ not aligned: $2(\operatorname{dim} 1)$!= 1 (dim 0)
my_vector_matrix * my_vector_matrix.transpose()
matrix([[25]])
my_vector_matrix.transpose() * my_vector_matrix
matrix([[12, 12] ${ }_{[12]}$

Need to respect matrix shape rules and ordering

Numpy array versus matrix

```
import numpy as np
my_matrix = np.matrix([[2, 1], [-1, -2]])
my_array = np.array([[2, 1], [-1, -2]])
my_vector_matrix = np.matrix([3, 4])
my_vector_array = np.array([3, 4])
print(my_matrix)
[[ [ 2 1]
    [-1 -2]]
print(my_array)
[[[ 2 1]
    [-1 -2]]
print(my_vector_matrix)
[[3 4]]
print(my_vector_array)
[3 4]
```

Q: How do the return values differ?

```
my_vector_matrix + my_vector_matrix
```

my_vector_array + my_vector_array

Numpy array versus matrix

```
import numpy as np
my_matrix = np.matrix([[2, 1], [-1, -2]])
my_array = np.array([[2, 1], [-1, -2]])
my_vector_matrix = np.matrix([3, 4])
my_vector_array = np.array([3, 4])
print(my_matrix)
[[ [ 2 1]
    [-1 -2]]
print(my_array)
[[[ 2 1]
    [-1 -2]]
print(my_vector_matrix)
[[3 4]]
print(my_vector_array)
[3 4]
```

Q: How do the return values differ?

```
my_vector_matrix + my_vector_matrix
matrix([[6, 8]])
```

my_vector_array + my_vector_array
array([6, 8])

The same!

Plan for today

1. Motivation-revision of coupled linear ODEs and illustration of stiff functions
2. How to do linear algebra with python-Sympy versus Numpy
3. Solution - solving a stiff linear ODE system with an implicit method
4. This week's tutorial - matrices and harmonic oscillator solution with implicit methods

Explicit versus implicit methods

An explicit method is one where the variable we want at the next step y_{k+1} can be written explicitly in terms of quantities we know at the current step y_{k}, t_{k}, e.g.

$$
y_{k+1}=y_{k}+h f\left(y_{k}, t_{k}\right) \quad \text { "forward Euler - explicit" }
$$

Implicit methods will instead result in equations where we cannot easily isolate and solve for the quantity we want,
e.g.

$$
y_{k+1}=y_{k}+h f\left(y_{k+1}, t_{k+1}\right) \quad \text { "backward Euler-implicit" }
$$

Change in paradigm for implicit methods

$$
\begin{gathered}
\frac{d y}{d t}=y^{2}+y-1 \\
y(t=0)=1
\end{gathered}
$$

Backward Euler's method

$$
\begin{aligned}
& \frac{d y}{d t}=y^{2}+y-1 \\
& y(t=0)=1
\end{aligned}
$$

Backward Euler's method

$$
\begin{gathered}
\frac{d y}{d t}=y^{2}+y-1 \\
y(t=0)=1
\end{gathered}
$$

Backward Euler's method

$$
\begin{aligned}
& \frac{d y}{d t}=y^{2}+y-1 \\
& y(t=0)=1
\end{aligned}
$$

Let's solve our initial problem this way

Consider this simple first order dimension 2 linear ODE:

$$
\begin{aligned}
& \dot{x}=998 x+1998 y \quad x(0)=1 \\
& \dot{y}=-999 x-1999 y \quad y(0)=0
\end{aligned}
$$

This is using Euler's forward method with 400 points

Let's solve our initial problem this way

Let's call the matrix C , and assume that it has only positive eigenvalues, so:

$$
\frac{d}{d t}\left[\begin{array}{l}
x \\
y
\end{array}\right]=-C\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

The backward Euler method with step size h is

$$
x_{k+1}=x_{k}+h\left(-C x_{k+1}\right)
$$

With a bit of matrix algebra can rearrange this so that:

$$
x_{k+1}=(I+h C)^{-1} x_{k}
$$

So we see that any x_{k} is obtained from the initial state x_{0} by k applications of the matrix

$$
x_{k}=(I+h C)^{-k} x_{0}
$$

Let's solve our initial problem this way

Again, knowing that C is positive definite, this means that it can be decomposed as
$C=A^{-1} \Lambda A$
with Λ a diagonal matrix of the eigenvalues.
A bit of matrix algebra gives:
$(I+h C)^{-k}=A^{-1}(I+h \Lambda)^{-k} A$
Now for convergence we need $\left|\frac{1}{1+h \lambda_{i}}\right|<1$ for all λ_{i}
But this is always the case since h and λ_{i} are positive! Unconditional convergence!

Let's solve our initial problem this way

This is using Euler's backwards method with 75 points

This seems too good to be true!

What's the catch?

Let's solve our initial problem this way

We had to invert a matrix to get this solution. That is trivial for a 2×2 system, but for higher dimension systems (that we we encounter with PDEs) it is VERY costly.

Also we have only considered linear systems, for a good reason! Non linear systems will be harder and will require iteration at each time step (more next week)

What about solve_ivp()?

solve_ivp() detects the stiff system and either takes smaller steps initially or switches to another method
(LSODA rather than RK45)

Plan for today

1. Motivation-revision of coupled linear ODEs and illustration of stiff functions
2. How to do linear algebra with python-Sympy versus Numpy
3. Solution-solving a stiff linear ODE system with an implicit method
4. This week's tutorial - matrices and harmonic oscillator solution with implicit methods

Tutorial this week

ACTIVITY 1:

I have written a class below for integrating linear equations that implements the (explicit) forward Euler method using matrix methods. Update it to include the (implicit) backwards Euler method. Be sure to add in asserts to sense check what the class is doing.
The class is applied to the system we saw in the lectures:
$\dot{x}=998 x+1998 y \quad x(0)=1$
$\dot{y}=-999 x-1999 y \quad y(0)=0$
which can also be written as
$\frac{d}{d t}\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{cc}998 & 1998 \\ -999 & -1999\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

1. What is the maximum step size we can take while still keeping the Forward Euler method stable?
2. Is this consistent with the bounds we saw in the lecture?
3. What step size do we need to take in order to keep the Backward Euler method stable?
4. Is this consistent with the bounds we saw in the lecture?
5. What step size do we need to take in order to render the Backward Euler method accurate?

Implement and test the backwards Euler method

Tutorial this week

ACTIVITY 2:

Now apply the integrator to the following coupled, second order harmonic oscillator system.
HINT You first need to think carefully about what dimension this needs to be, and how to cast it into first order matrix form:
$m_{1} \ddot{x}_{1}=-k x_{1}+k\left(x_{2}-x_{1}\right)=-2 k x_{1}+k x_{2}$
$m_{2} \ddot{x}_{2}=-k x_{2}+k\left(x_{1}-x_{2}\right)=-2 k x_{2}+k x_{1}$
where k is the spring constant and m_{1} and m_{2} are the mass of the oscillators. Set the initial conditions as
$x_{1}=1 \quad \dot{x}_{1}=0$
$x_{2}=0 \quad \dot{x}_{2}=2$
Set $k=1$ and $m_{1}=0.1$ and $m_{2}=10$
\# Integrator for the coupled harmonic oscillator
\# UPDATE ME!

Apply it to the coupled harmonic oscillator

Tutorial this week

ACTIVITY 3

Now we will try solving the systems with sympy. Below is the code for the lecture example. Update it to solve for the coupled harmonic oscillator above, checking against your numerical solution. Is that equation stiff or not? How can you tell?

```
# Solution of coupled linear equations using sympy
import sympy as sp
from sympy import symbols, Eq, Function, pprint, Matrix
from sympy.solvers.ode.systems import dsolve_system
# Compare the eigenvalue decomposition
C_matrix = Matrix([[998, 1998],[-999, -1999]])
C_inverse = C_matrix.inv()
eigenvalues_and_vectors = C_matrix.eigenvects()
print("\n The matrix is ")
pprint(C_matrix)
print("\n Its inverse is ")
pprint(C_inverse)
print("\n Eigenvalues and eigenvectors are ")
pprint(eigenvalues_and_vectors)
# solve the linear system of ODEs
x = Function("x")
y = Function("y")
t = symbols("t")
my_equations = [Eq(x(t).diff(t), 998*x(t) + 1998*y(t)),
    Eq(y(t).diff(t), -999*x(t) - 1999*y(t))]
```


Tutorial this week

ACTIVITY 4
Which is faster, sympy or numpy?

Generate an NxN matrix containing random integers both sympy and numpy.
Compute the inverse using both libraries and calculate the time taken to do this. Repeat this for a range of N and see which one scales better - make a plot of your results. What do you conclude?

HINT Recall that we talked about timing functions in the Week 2 lecture.

\# UPDATE ME!

my_matrix $=$ numpy. random. randint(low=0, high=10, size $=[3,3]$)
print(my_matrix)
print(np.linalg.inv(my_matrix))
[$\left.\begin{array}{lll}8 & 6 & 0\end{array}\right]$
$\left[\begin{array}{lll}3 & 0 & 3\end{array}\right]$
$\left.\left[\begin{array}{lll}6 & 9 & 8\end{array}\right]\right]$
[$\left[\begin{array}{llll}{[0.10714286} & 0.19047619 & -0.07142857\end{array}\right]$
$\left[\begin{array}{llll}{[0.02380952} & -0.25396825 & 0.0952381\end{array}\right]$
$\left[\begin{array}{lll}-0.10714286 & 0.14285714 & 0.07142857\end{array}\right]$

Compare the speed of sympy and numpy in inverting matrices

