
Dr K Clough, Topics in Scientific computing, Autumn term 2023

Week 5: Matrices and implicit
methods for linear ODEs
- Matrices in python, backwards Euler method for linear systems

Coursework announcement - animation and
displaying results

I have uploaded an example animation with the Week 4 Tutorial Solutions,
but you do not have to use animation in the coursework. 
 
Another nice method of seeing evolution is to use a series of snapshots.

Coursework announcement - animation and
displaying results

I have uploaded an example animation with the Week 4 Tutorial Solutions,
but you do not have to use animation in the coursework. 
 
How could you give a star a “tail”? Investigate the parameter “alpha” that
changes the opacity of the line, noting that it can be a vector…

Sometimes pictures easier to share than movies so don’t discount them!

Plan for today
1. Motivation - revision of coupled linear ODEs and illustration of stiff functions

2. How to do linear algebra with python - Sympy versus Numpy

3. Solution - solving a stiff linear ODE system with an implicit method

4. This week’s tutorial - matrices and harmonic oscillator solution with implicit
methods

Revision of coupled linear ODEs
Consider this simple first order dimension 2 linear ODE:

·x = 998x + 1998y x(0) = 1
·y = − 999x − 1999y y(0) = 0

How do I solve this equation (analytically)?

Consider this simple first order dimension 2 linear ODE:

Recall that we can write a linear system of equations as a matrix equation

Find the eigenvalues and their associated eigenvectors , then solution is

 and we determine the coefficients using the initial conditions

·x = 998x + 1998y x(0) = 1
·y = − 999x − 1999y y(0) = 0

d
dt [x

y] = [998 1998
−999 −1999] [x

y]
λi vi

X = ∑
i

Aivieλi Ai

Revision of coupled linear ODEs

 

The two eigenvalues and their associated eigenvectors are  
 

so solution is:

 and using the initial conditions A = -1 B =1

d
dt [x

y] = [998 1998
−999 −1999] [x

y]

λi = (−1000, − 1) vi = [−1
1], [−2

1]

[x
y] = [−2Ae−t + −Be−1000t

Ae−t + Be−1000t]

Revision of coupled linear ODEs

Why two?

The two eigenvalues and their associated eigenvectors are  
 

λi = (−1000, − 1) vi = [−1
1], [−2

1]
What does this tell me (physically) about the solution?

Revision of coupled linear ODEs

The two eigenvalues and their associated eigenvectors are  
 

λi = (−1000, − 1) vi = [−1
1], [−2

1]
Two modes, one with a very short timescale, one with

a much longer one ()

Modes go in “opposite directions” for x and y

τ ∼ 1/λi

Revision of coupled linear ODEs

The two eigenvalues and their associated eigenvectors are  
 

λi = (−1000, − 1) vi = [−1
1], [−2

1]
Two modes, one with a very
short timescale, one with a
much longer one ()

Modes go in “opposite
directions” for x and y

τ ∼ 1/λi

Revision of coupled linear ODEs

Two modes, one with a very
short timescale, one with a
much longer one ()

Recall that we called these
“stiff” systems

τ ∼ 1/λi

The trouble with explicit solutions

Why will our explicit methods have trouble with this system?

Let’s call the matrix C, and assume that it has only positive eigenvalues, so:

d
dt [x

y] = − C [x
y]

Why do I need it to only have
positive eigenvalues?

The trouble with explicit solutions for stiff systems

Let’s call the matrix C, and assume that it has only positive eigenvalues, so:

d
dt [x

y] = − C [x
y]

We assume the system is stable, so
modes decay over time, therefore the

eigenvalues (noting the minus sign
introduced above) need to be positive

The trouble with explicit solutions for stiff systems

Let’s call the matrix C, and assume that it has only positive eigenvalues, so:

The forward Euler method with step size h is

So we see that any is obtained from the initial 
state by k applications of the matrix

d
dt [x

y] = − C [x
y]

xk+1 = xk + h(−Cxk)

xk
x0 (I − hC)

xk = (I − hC)kx0

The trouble with explicit solutions for stiff systems

Knowing that C is positive definite, this means that  
it can be decomposed as

  
 
with a diagonal matrix of the eigenvalues.

A bit of matrix algebra gives:

C = A−1ΛA

Λ

(I − hC)k = A−1(I − hΛ)kA

Where do the s go? Remember that for matrices
Ak (AB)2 = ABAB

The trouble with explicit solutions for stiff systems

Any is obtained from the initial state as:

If we want this to converge for all the elements of  
the matrix we need that 
 

And so we need a step size h given by

 (which for is very small compared to the other  

 timescale in the problem of 1)

xk x0

xk = A−1(I − hΛ)kAx0

|1 − hλmax | < 1

h <
2

λmax
λmax = 1000

The trouble with explicit solutions for stiff systems

Plan for today
1. Motivation - revision of coupled linear ODEs and illustration of stiff functions

2. How to do linear algebra with python - Sympy versus Numpy

3. Solution - solving a stiff linear ODE system with an implicit method

4. This week’s tutorial - matrices and harmonic oscillator solution with implicit
methods

Linear algebra using Python
Q: When should we use sympy and when numpy/scipy?

Linear algebra using Python
Sympy when we expect whole number answers, or symbolic math

For numerics, mostly use numpy or scipy

Sympy
For symbolic math and algebra. Useful for checking simple algebra, for more

advanced symbolic maths I recommend SageMath or Mathematica

Usually import the whole class or
function you need. Can also do:

And use sp.function for less
frequently used functions

Sympy
For symbolic math and algebra. Useful for checking simple algebra, for more

advanced symbolic maths I recommend SageMath or Mathematica

Matrix is a class in sympy.

Here we are instantiating an object

of the Matrix class - setting its
attributes (basically its size and
entries) with the values given.

Sympy
For symbolic math and algebra. Useful for checking simple algebra, for more

advanced symbolic maths I recommend SageMath or Mathematica

The Matrix class contains most of the
methods you want for getting properties of

the matrix - its inverse, determinant,
eigenvalues etc.

Since they are methods (functions) and not
attributes we need the brackets after them ().

Remember to think of these methods as
saying,  

“Hey C_matrix, give me your inverse!”

Sympy
For symbolic math and algebra. Useful for checking simple algebra, for more

advanced symbolic maths I recommend SageMath or Mathematica

pprint() is a useful function for printing off
sympy algebra in a nice way

Sympy
For symbolic math and algebra. Useful for checking simple algebra, for more

advanced symbolic maths I recommend SageMath or Mathematica

Q: What is the 1 in the middle here?

Sympy
Another example

Q: What is the 2 in the middle here?

Sympy
Another example

This is the multiplicity of the eigenvalue (if we
have repeated eigenvalues, it is > 1)

Value of the eigenvalue

Value of the
eigenvectors for each
repeated eigenvalue

Sympy can solve simple
ODEs, but usually prefers to

formulate them as a system of
coupled algebraic expressions

Sympy

Again here Function is a class
that sympy uses to represent
variables that are functions of

another variable.

Instead symbol is used for the

independent variable t.

The Function class has a
method that allows us to
differentiate the function

Sympy

Another class is Eq for an
equation LHS = RHS

Eq (RHS, LHS)

Sympy

Can also feed in the initial
conditions to dsolve_system()

Sympy

Again numpy has a matrix
class (small m!)

However, now most of the
functions to get things like
eigenvalues or inverses live
not as methods in the class,

but instead as methods in the
library of functions np.linalg.

These functions expect to act
on objects of type “matrix”.

Numpy and Scipy

Numpy array versus matrix

Q: How do the return values differ?

Numpy array versus matrix

Q: How do the return values differ?

“Proper”
matrix inverse

1/element for
each entry

Numpy array versus matrix

Q: How do the return values differ?

Numpy array versus matrix

Q: How do the return values differ?

Need to
respect matrix

shape rules
and ordering

Each entry in turn

Numpy array versus matrix

Q: How do the return values differ?

Numpy array versus matrix

Q: How do the return values differ?

The same!

Plan for today
1. Motivation - revision of coupled linear ODEs and illustration of stiff functions

2. How to do linear algebra with python - Sympy versus Numpy

3. Solution - solving a stiff linear ODE system with an implicit method

4. This week’s tutorial - matrices and harmonic oscillator solution with implicit
methods

Explicit versus implicit methods
An explicit method is one where the variable we want at the next step can
be written explicitly in terms of quantities we know at the current step ,  
e.g.

 “forward Euler - explicit”

Implicit methods will instead result in equations where we cannot easily isolate
and solve for the quantity we want,  
e.g.

 “backward Euler - implicit”

yk+1
yk, tk

yk+1 = yk + h f(yk, tk)

yk+1 = yk + h f(yk+1, tk+1)

Change in paradigm for implicit methods

dy
dt

= y2 + y − 1

y(t = 0) = 1

t

y

y=1

t=1

?

What value here
gives me a new

gradient that touches
the first point

dy
dt

= y2 + y − 1

y(t = 0) = 1

t

y

y1=1

t=1

Δy ≈ (y2
new + ynew − 1) Δt

Too low!

Backward Euler’s method

ynew ?

Too high!

dy
dt

= y2 + y − 1

y(t = 0) = 1

t

y

y1=1

t=1

Δy ≈ (y2
new + ynew − 1) Δt

Backward Euler’s method

ynew ?

Backward Euler’s method

dy
dt

= y2 + y − 1

y(t = 0) = 1

t

y

y=1

t=1

Δy ≈ (y2
new + ynew − 1) Δt

That’s roughly it!

ynew

Let’s solve our initial problem this way
Consider this simple first order dimension 2 linear ODE:

This is using Euler’s forward  
method with 400 points

·x = 998x + 1998y x(0) = 1
·y = − 999x − 1999y y(0) = 0

Let’s call the matrix C, and assume that it has only positive eigenvalues, so:

The backward Euler method with step size h is

With a bit of matrix algebra can rearrange this so that:

So we see that any is obtained from the initial state by k applications of the matrix

d
dt [x

y] = − C [x
y]

xk+1 = xk + h(−Cxk+1)

xk+1 = (I + hC)−1xk

xk x0

xk = (I + hC)−kx0

Let’s solve our initial problem this way

Let’s solve our initial problem this way
Again, knowing that C is positive definite, this means that  
it can be decomposed as

  
 
with a diagonal matrix of the eigenvalues.

A bit of matrix algebra gives:

Now for convergence we need for all

But this is always the case since h and are positive! Unconditional convergence!

C = A−1ΛA

Λ

(I + hC)−k = A−1(I + hΛ)−kA

1
1 + hλi

< 1 λi

λi

Let’s solve our initial problem this way

This is using Euler’s backwards  
method with 75 points

This seems too good
to be true!

What’s the catch?

Let’s solve our initial problem this way

We had to invert a matrix to get
this solution. That is trivial for a 2x2
system, but for higher dimension
systems (that we we encounter
with PDEs) it is VERY costly.

Also we have only considered
linear systems, for a good reason! 
Non linear systems will be harder
and will require iteration at each
time step (more next week)

What about solve_ivp() ?

solve_ivp() detects the
stiff system and either

takes smaller steps
initially or switches to

another method
(LSODA rather than

RK45)

Plan for today
1. Motivation - revision of coupled linear ODEs and illustration of stiff functions

2. How to do linear algebra with python - Sympy versus Numpy

3. Solution - solving a stiff linear ODE system with an implicit method

4. This week’s tutorial - matrices and harmonic oscillator solution with implicit
methods

Tutorial this week

Implement and test the
backwards Euler

method

Tutorial this week

Apply it to the coupled
harmonic oscillator

Tutorial this week

Try out some sympy

Tutorial this week

Compare the speed of
sympy and numpy in

inverting matrices

