
Dr K Clough, Topics in Scientific computing, Autumn term 2023

Week 5: Matrices and implicit 
methods for linear ODEs
- Matrices in python, backwards Euler method for linear systems



Coursework announcement - animation and 
displaying results 

I have uploaded an example animation with the Week 4 Tutorial Solutions, 
but you do not have to use animation in the coursework. 
 
Another nice method of seeing evolution is to use a series of snapshots.



Coursework announcement - animation and 
displaying results 

I have uploaded an example animation with the Week 4 Tutorial Solutions, 
but you do not have to use animation in the coursework. 
 
How could you give a star a “tail”? Investigate the parameter “alpha” that 
changes the opacity of the line, noting that it can be a vector…


Sometimes pictures easier to share than movies so don’t discount them!



Plan for today
1. Motivation - revision of coupled linear ODEs and illustration of stiff functions


2. How to do linear algebra with python - Sympy versus Numpy 


3. Solution - solving a stiff linear ODE system with an implicit method


4. This week’s tutorial - matrices and harmonic oscillator solution with implicit 
methods



Revision of coupled linear ODEs
Consider this simple first order dimension 2 linear ODE:


 





·x = 998x + 1998y x(0) = 1
·y = − 999x − 1999y y(0) = 0

How do I solve this equation (analytically)?




Consider this simple first order dimension 2 linear ODE:


 





Recall that we can write a linear system of equations as a matrix equation





Find the eigenvalues  and their associated eigenvectors , then solution is


    and we determine the coefficients  using the initial conditions

·x = 998x + 1998y x(0) = 1
·y = − 999x − 1999y y(0) = 0

d
dt [x

y] = [ 998 1998
−999 −1999] [x

y]
λi vi

X = ∑
i

Aivieλi Ai

Revision of coupled linear ODEs



 

The two eigenvalues and their associated eigenvectors are  
 

          


so solution is:


    and using the initial conditions A = -1 B =1

d
dt [x

y] = [ 998 1998
−999 −1999] [x

y]

λi = (−1000, − 1) vi = [−1
1 ], [−2

1 ]

[x
y] = [−2Ae−t + −Be−1000t

Ae−t + Be−1000t ]

Revision of coupled linear ODEs

Why two?




The two eigenvalues and their associated eigenvectors are  
 

          
λi = (−1000, − 1) vi = [−1
1 ], [−2

1 ]
What does this tell me (physically) about the solution?


Revision of coupled linear ODEs



The two eigenvalues and their associated eigenvectors are  
 

          
λi = (−1000, − 1) vi = [−1
1 ], [−2

1 ]
Two modes, one with a very short timescale, one with 

a much longer one ( )


Modes go in “opposite directions” for x and y


τ ∼ 1/λi

Revision of coupled linear ODEs



The two eigenvalues and their associated eigenvectors are  
 

          
λi = (−1000, − 1) vi = [−1
1 ], [−2

1 ]
Two modes, one with a very 
short timescale, one with a 
much longer one ( )


Modes go in “opposite 
directions” for x and y


τ ∼ 1/λi

Revision of coupled linear ODEs



Two modes, one with a very 
short timescale, one with a 
much longer one ( )


Recall that we called these 
“stiff” systems


τ ∼ 1/λi

The trouble with explicit solutions

Why will our explicit methods have trouble with this system?




Let’s call the matrix C, and assume that it has only positive eigenvalues, so:




d
dt [x

y] = − C [x
y]

Why do I need it to only have 
positive eigenvalues?


The trouble with explicit solutions for stiff systems



Let’s call the matrix C, and assume that it has only positive eigenvalues, so:




d
dt [x

y] = − C [x
y]

We assume the system is stable, so 
modes decay over time, therefore the 

eigenvalues (noting the minus sign 
introduced above) need to be positive 

The trouble with explicit solutions for stiff systems



Let’s call the matrix C, and assume that it has only positive eigenvalues, so:





The forward Euler method with step size h is





So we see that any  is obtained from the initial 
state  by k applications of the matrix 





d
dt [x

y] = − C [x
y]

xk+1 = xk + h(−Cxk)

xk
x0 (I − hC)

xk = (I − hC)kx0

The trouble with explicit solutions for stiff systems



Knowing that C is positive definite, this means that  
it can be decomposed as


  
 
with  a diagonal matrix of the eigenvalues. 


A bit of matrix algebra gives:





C = A−1ΛA

Λ

(I − hC)k = A−1(I − hΛ)kA

Where do the s go? Remember that for matrices 
Ak (AB)2 = ABAB

The trouble with explicit solutions for stiff systems



Any  is obtained from the initial state  as:





If we want this to converge for all the elements of  
the matrix we need that 
 




And so we need a step size h given by


                (which for  is very small compared to the other  

                                         timescale in the problem of 1)

xk x0

xk = A−1(I − hΛ)kAx0

|1 − hλmax | < 1

h <
2

λmax
λmax = 1000

The trouble with explicit solutions for stiff systems



Plan for today
1. Motivation - revision of coupled linear ODEs and illustration of stiff functions


2. How to do linear algebra with python - Sympy versus Numpy 


3. Solution - solving a stiff linear ODE system with an implicit method


4. This week’s tutorial - matrices and harmonic oscillator solution with implicit 
methods



Linear algebra using Python
Q: When should we use sympy and when numpy/scipy?  



Linear algebra using Python
Sympy when we expect whole number answers, or symbolic math


For numerics, mostly use numpy or scipy 



Sympy
For symbolic math and algebra. Useful for checking simple algebra, for more 

advanced symbolic maths I recommend SageMath or Mathematica 

Usually import the whole class or 
function you need. Can also do: 

And use sp.function for less 
frequently used functions 



Sympy
For symbolic math and algebra. Useful for checking simple algebra, for more 

advanced symbolic maths I recommend SageMath or Mathematica 

Matrix is a class in sympy.

Here we are instantiating an object 

of the Matrix class - setting its 
attributes (basically its size and 
entries) with the values given.



Sympy
For symbolic math and algebra. Useful for checking simple algebra, for more 

advanced symbolic maths I recommend SageMath or Mathematica 

The Matrix class contains most of the 
methods you want for getting properties of 

the matrix - its inverse, determinant, 
eigenvalues etc.


Since they are methods (functions) and not 
attributes we need the brackets after them ().


Remember to think of these methods as 
saying,  

“Hey C_matrix, give me your inverse!”



Sympy
For symbolic math and algebra. Useful for checking simple algebra, for more 

advanced symbolic maths I recommend SageMath or Mathematica 

pprint() is a useful function for printing off 
sympy algebra in a nice way 



Sympy
For symbolic math and algebra. Useful for checking simple algebra, for more 

advanced symbolic maths I recommend SageMath or Mathematica 

Q: What is the 1 in the middle here?  



Sympy
Another example

Q: What is the 2 in the middle here?  



Sympy
Another example

This is the multiplicity of the eigenvalue (if we 
have repeated eigenvalues, it is > 1)

Value of the eigenvalue

Value of the 
eigenvectors for each 
repeated eigenvalue



Sympy can solve simple 
ODEs, but usually prefers to 

formulate them as a system of 
coupled algebraic expressions

Sympy



Again here Function is a class 
that sympy uses to represent 
variables that are functions of 

another variable. 

Instead symbol is used for the 

independent variable t.


The Function class has a 
method that allows us to 
differentiate the function


Sympy



Another class is Eq for an 
equation LHS = RHS


Eq (RHS, LHS)


Sympy



Can also feed in the initial 
conditions to dsolve_system()


Sympy



Again numpy has a matrix 
class (small m!)


However, now most of the 
functions to get things like 
eigenvalues or inverses live 
not as methods in the class, 

but instead as methods in the 
library of functions np.linalg.

These functions expect to act 
on objects of type “matrix”.

Numpy and Scipy



Numpy array versus matrix

Q: How do the return values differ?  



Numpy array versus matrix

Q: How do the return values differ?  

“Proper” 
matrix inverse


1/element for 
each entry




Numpy array versus matrix

Q: How do the return values differ?  



Numpy array versus matrix

Q: How do the return values differ?  

Need to 
respect matrix 

shape rules 
and ordering


Each entry in turn




Numpy array versus matrix

Q: How do the return values differ?  



Numpy array versus matrix

Q: How do the return values differ?  

The same!




Plan for today
1. Motivation - revision of coupled linear ODEs and illustration of stiff functions


2. How to do linear algebra with python - Sympy versus Numpy 


3. Solution - solving a stiff linear ODE system with an implicit method


4. This week’s tutorial - matrices and harmonic oscillator solution with implicit 
methods



Explicit versus implicit methods
An explicit method is one where the variable we want at the next step  can 
be written explicitly in terms of quantities we know at the current step ,  
e.g.


               “forward Euler - explicit”


Implicit methods will instead result in equations where we cannot easily isolate 
and solve for the quantity we want,  
e.g.


       “backward Euler - implicit”

yk+1
yk, tk

yk+1 = yk + h f(yk, tk)

yk+1 = yk + h f(yk+1, tk+1)



Change in paradigm for implicit methods







dy
dt

= y2 + y − 1

y(t = 0) = 1

t

y

y=1

t=1

?

What value here 
gives me a new 

gradient that touches 
the first point










dy
dt

= y2 + y − 1

y(t = 0) = 1

t

y

y1=1

t=1

Δy ≈ (y2
new + ynew − 1) Δt

Too low!


Backward Euler’s method

ynew ?



Too high!







dy
dt

= y2 + y − 1

y(t = 0) = 1

t

y

y1=1

t=1

Δy ≈ (y2
new + ynew − 1) Δt

Backward Euler’s method

ynew ?



Backward Euler’s method







dy
dt

= y2 + y − 1

y(t = 0) = 1

t

y

y=1

t=1

Δy ≈ (y2
new + ynew − 1) Δt

That’s roughly it!

ynew 



Let’s solve our initial problem this way
Consider this simple first order dimension 2 linear ODE:


 





This is using Euler’s forward  
method with 400 points

·x = 998x + 1998y x(0) = 1
·y = − 999x − 1999y y(0) = 0



Let’s call the matrix C, and assume that it has only positive eigenvalues, so:





The backward Euler method with step size h is





With a bit of matrix algebra can rearrange this so that:





So we see that any  is obtained from the initial state  by k applications of the matrix


d
dt [x

y] = − C [x
y]

xk+1 = xk + h(−Cxk+1)

xk+1 = (I + hC)−1xk

xk x0

xk = (I + hC)−kx0

Let’s solve our initial problem this way



Let’s solve our initial problem this way
Again, knowing that C is positive definite, this means that  
it can be decomposed as


  
 
with  a diagonal matrix of the eigenvalues. 


A bit of matrix algebra gives:





Now for convergence we need  for all  


But this is always the case since h and  are positive! Unconditional convergence!

C = A−1ΛA

Λ

(I + hC)−k = A−1(I + hΛ)−kA

1
1 + hλi

< 1 λi

λi



Let’s solve our initial problem this way

This is using Euler’s backwards  
method with 75 points

This seems too good 
to be true!


What’s the catch?




Let’s solve our initial problem this way

We had to invert a matrix to get 
this solution. That is trivial for a 2x2 
system, but for higher dimension 
systems (that we we encounter 
with PDEs) it is VERY costly.


Also we have only considered 
linear systems, for a good reason! 
Non linear systems will be harder 
and will require iteration at each 
time step (more next week)



What about solve_ivp() ?

solve_ivp() detects the 
stiff system and either 

takes smaller steps 
initially or switches to 

another method 
(LSODA rather than 

RK45)




Plan for today
1. Motivation - revision of coupled linear ODEs and illustration of stiff functions


2. How to do linear algebra with python - Sympy versus Numpy 


3. Solution - solving a stiff linear ODE system with an implicit method


4. This week’s tutorial - matrices and harmonic oscillator solution with implicit 
methods



Tutorial this week

Implement and test the 
backwards Euler 

method




Tutorial this week

Apply it to the coupled 
harmonic oscillator



Tutorial this week

Try out some sympy



Tutorial this week

Compare the speed of 
sympy and numpy in 

inverting matrices


