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Parametric estimation
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a different approach
Kaplan-Meier is an example of non-parametric estimation

We now turn to the alternative, parametric estimation of the survival 
function

Here we will assume S(t) has some functional form
◦ this means we can express S(t) and the hazard µt in terms of parameters of 

that function
◦ we can then seek to estimate these parameters by maximum likelihood 

techniques
◦ we have already met some simple functional forms of S(t) when we 

introduced exponential; Weibull; Gompertz; Makeham in week 2
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Maximum Likelihood Estimation

4



What is a MLE?

The maximum likelihood estimator 
θ for a parameter θ, is the estimate 
which maximises the probability of 

obtaining the sample we have 
actually observed

The maximum likelihood estimator  
is the parameter estimate that 

maximises the “likelihood function” 
which is the joint probability 

function [discrete distribution] or 
joint pdf [continuous] of the 

observed sample
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Binomial example
n trials gives observations y1, y2,…, yn
◦ yi = 1 if the ith trial a success; yi= 0 otherwise

we look for the MLE of the probability of success “w”

likelihood function is, L(w) = L(y1, y2,…, yn │w) = wy (1 – w)n-y 

◦ where y = ∑ yi

◦ the MLE is the w which maximises L(w)
◦ we do this by taking derivative of L(w) with respect to w; setting to zero and 

solving for w
◦ as L(w) is a product of functions it is much easier to find the derivative of 

log[L(w)] given L(w) and log[L(w)] are maximised at the same value of w
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Binomial example continued
log[L(w)] = log[wy (1 – w)n-y ]

       = y log(w) + (n-y) log(1-w)

and 

  d  log[L(w)] = y  1    + (n-y)  -1 =  y   -   n-y

dw                        w                1-w     w      1-w

the log likelihood (and likelihood) are maximised at w where

  y   -   n-y    =  0   which solves to give w = y    (the fraction of success observed

  w      1-w            n     in the trials, which is intuitive)
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[we should now take 2nd derivative and check <0 to make sure we have found max not min]



MLE in Survival Models
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MLE with the exponential model
We will use the exponential hazard model as a working example of a parametric 
approach to estimating the lifetime distribution

Recall the exponential model assumes the hazard (or force of mortality) is a 
constant µ

This gives us Sₓ(t) = exp(-µt)

But µ here is an unknown. Today we are seeking the estimate of µ which is most 
likely given our observations. The maximum likelihood estimate is denoted µ
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observations
n lives observed from exact age x until one of:

a) death

b) withdrawal from the investigation during the year

c) x+1th birthday

note that b) and c) are forms of censoring

we will consider first category a) and then b) + c)
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deaths
If:
◦ there are k deaths at durations t1, t2, …, tk  and

◦ f(t) is the probability density function of lifetime T

Then
◦ the probability that life 1 actually dies at duration t1 is f(t1)

◦ the prob that life 1 dies at duration t1 and life 2 dies at duration t2 is f(t1). f(t2)

◦ for all k deaths the probability is

  ∏ f(ti)
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all deaths



censored
if the first censored life was censored at duration tk+1

all that we know is that life survived to at least tk+1 

◦ the probability of this is S(tk+1)

so the probability of observing all the data we have for censored lives is

    ∏ S(ti)
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all censored



Likelihood function
putting together the deaths and the censored lives, the probability of observing 
all the data that we observed is:

   L =  ∏ f(ti) .  ∏ S(ti)

this product is the ‘likelihood’ of the observed data

we seek a MLE µ of the exponential model hazard parameter µ which will 
maximise this likelihood product L
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‸



finding the MLE µ

find the likelihood 
function L in terms 

of µ

differentiate L [or, 
more often log(L)] 
with respect to µ

set to zero and 
solve for µ
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Demonstration
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See Demonstration07 
pdf file on QM Plus



µ in the exponential model
therefore

  µ = ∑ δi =                        total number of deaths

         ∑ ti     total time lives in study exposed to risk of death

This is an example of parametric estimation with one parameter (µ here)

If we had more than one parameter we would need to differentiate L with respect to 
each one and then solve simultaneous equations (which in most cases would mean 
iterative rather than analytical methods)
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Chaining probabilities together
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chaining
In practice with human mortality we find no one survival function is accurate 
over all ages

It is better therefore to sub-divide ages and ‘chain together’ several different 
functions

This is simple to do with our exponential model example
◦ if the MLE for the force of mortality for single year from age x to x+1 is µx

◦ then the survival function for that year is Sx(1) = exp(- µx)
◦ then if we estimate the force of mortality for the next year to be µx+1

◦ the probability a person alive at age x is still alive at age x+2 is

Sx(2) = exp(- µx). exp(- µx+1)   = exp{-(µx + µx+1)} 
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general exponential model chain
chaining together m years from age x with a MLE of the force of mortality in 
each successive year:

  Sx(m) =  exp  - ∑ µx+j
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Topic outline

1
• Covariate data

2
• Proportional Hazard (PH) models

3
• The Cox PH model

4
• Model fitting criteria
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If you were asked 

to carry out an 

investigation 

comparing 

mortality in Perth, 

Scotland and 

Perth, Australia 

what data (in 

addition to 

observed deaths) 

would you collect 

on the population 

of the 2 cities?



Covariate data
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Covariates
so far the models and estimators we have looked at in this course have used 
only age and duration data (x, t)

in practice more data would usually be recorded for each life in a study which 
might be valuable for modelling purposes 

this data is called covariate data 
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Age Male / 
Female

Smoker / 
non-smoker

Type of 
treatment

Symptom 
severity

Postcode Time since 
last medical



2 ways to deal with covariate data

sub-divide the 
population into 

smaller groups and 
model separately

model the effects of 
covariates directly using 
some ‘regression model’
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covariate notation

there are p covariate data measures obtained for each life

zi is a 1xp vector of covariates for the ith life

 zi =  ( Xi1, Xi2, .., Xip )

the covariates can be collected in one of three ways
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Covariate measure Example time since last medical

Raw numerical value Actual time in months

0 or 1 value assigned 1 if within last year, 0 otherwise

Score on some other scale e.g. 1 to 5 
(qualitative)

1 if 0-3 months; 2 if 3-6 months; 3 if 6-12 months; 
4 if 12-24 months; 5 if > 2 years



example covariates

Life Male or Female
(F=1; M=0)

Weekly alcohol 
consumption 
(units)

Time since last 
medical
(scored 1-5)

Prior history of 
heart disease 
(yes=1; no=0)

1 1 6 5 0

2 1 0 3 0

3 0 26 2 1

4 1 12 2 0

5 0 9 5 0
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Proportional Hazard models
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PH models
The most commonly used regression models in survival analysis
◦ can be built using non-parametric or parametric approaches

Instead of the force of mortality µx+t used in our simpler models, we introduce 
the hazard function λi for the ith life where the hazard is now a function of both 
duration t and the covariate data vector zi

In a Proportional Hazard model,

     λi(t, zi) = λ0(t) . g(zi)

where λ0(t) is a function of duration only

and g(zi) is a function of the covariate vector only
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PH model simplifying assumption

  λi(t, zi) =  λ0(t) . g(zi)

λ0(t) a function of t only is the 
“baseline hazard”, it is the hazard for 
an individual with covariate vector of 
zero

g(zi) is a function of covariate data only

This is much simpler to model than a 
single function that varies with both 
covariate data and duration
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Parametric Proportional Hazard model
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parametric PH model
we can construct PH models on a non-parametric or parametric basis

in general in a parametric model we assume the lifetime distribution follows a 
certain functional form 

in a parametric PH model we assume the hazard function follows one of the 
types of parametric survival models e.g. exponential; Gompertz; Makeham (or 
others) and we bring the covariate vector into the model parameters 
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parametric PH using Gompertz
Example:

we know Gompertz as µₓ = Bcx  for some parameters B and c

in terms of a hazard function rather than a force of mortality this translates to

  λ(t) = Bct 

Now in a PH model we can let parameter B depend on the covariates 

if zi is our 1xp covariate vector and zi 
T  is the transpose of that vector (so px1)

then we can set Gompertz parameter B to be B = exp(β.zi 
T)

where β is a 1xp vector of regression coefficients  (β1, β2, .., βp)
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PH with Gompertz e.g. cont’d
λi(t, zi) = ct exp(β.zi 

T)

where
◦ the baseline hazard is ct 

◦ exp(β. zi 
T) is the [assumed] effect of the covariates

the log-hazard is linear and separates the baseline hazard term

  log[λi(t, zi)] = t log(c) + β. zi 
T  which can be very convenient to work with

however the usefulness of this model will depend entirely on how effectively we 
can estimate the regression coefficients β [the 1xp vector (β1, β2, .., βp)]
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The Cox PH model

36



introduction to Cox model
Cox, D.R. (1972) ‘Regression Models 
and Life-Tables’, Journal of the Royal 
Statistical Society (series B, 
methodological ) vol.34(2) pp.187-220

◦ Imperial College London 

◦ won the first International Statistics 
Prize in 2016 (awarded by the American 
Statistical Association, see statprize.org) 
for this survival models work
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Professor Sir David Cox, 1980. Source: General Motors 
Cancer Research Foundation, National Cancer Institute.



what and why
situations where we do not need to know the precise rate of mortality but 
instead are interested in relative levels of mortality between different 
individuals

we assume each individual’s mortality is proportional to some general function 
(the baseline hazard)
◦ we do not worry about the shape of this baseline hazard

◦ instead we focus on the constant of proportionality for each individual which will 
depend on the covariates

◦ this is a widely used survival model
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Cox PH model
Hazard is in the form 

    λi(t, zi) = λ0(t) exp(β.zi 
T)

◦ so the general shape of the hazard function depends on the baseline hazard λ0(t) 

◦ the differences between individuals are given by β.zi 
T 

◦ if we are conducting a study (e.g. a medical trial) where we are more interested in the effect 
of covariates than in the shape of the hazard, this means we can ignore the baseline hazard 
λ0(t) and look to estimate the regression coefficients β irrespective of λ0(t)

◦ this is called a “semi-parametric” approach which is widely used in statistical survival models

◦ the Cox model uses the method of “partial likelihood” to estimate the coefficients β but not 
the baseline hazard

◦ partial likelihood statistics behave in similar way to the more usual maximum likelihood
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Partial likelihood in Cox
assume deaths are observed at times t1, t2, …, tk with just one death at each tj

let R(tj) be the set of lives at risk of death at time tj (just prior to the jth death)

the partial likelihood calculation depends only on the order in which deaths are 
observed

the probability that life 1 [out of the set R (t1) ] is the life that dies at t1 
(conditional on one death being observed at that time) is

    λ0(t) exp(β.z1 
T)

  ∑λ0(t) exp(β.zi 
T)

40

i є R(t1) 

the baseline hazard λ0(t) will 
cancel top and bottom here



Partial likelihood in Cox (cont’d)
repeating this calculation for all observed deaths at t1, t2, …, tk the probability 
that life 1 out of set R(t1) dies at time t1 and life 2 out of set R(t2) dies at time t2 
and …. life k out of set R(tk) dies at time tk is given by the product of these 
probabilities.

This is the partial likelihood function which here is a function of parameters β 
(the regression coefficients)

         exp(β.zj 
T)

     ∑exp(β.zi 
T)
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i є R(tj) 

L(β) = ∏
j=1

k



Partial likelihood in Cox 
this L(β) is a partial likelihood function because it only uses the order in which 
deaths are observed and the rest of the observed data is discarded

To find the likelihood estimates for the regression coefficients β we would need 
to differentiate with respect to each of the p coefficients that make up β, set to 
zero and solve for vector β our likelihood estimate of vector β.

This vector of derivatives which we set to zero is the efficient score function u(β)

u(β) =      d  log L(β)   , ….. ,   d  log L(β)                 then β found by solving u(β) = 0

     dβ1                    dβp 

42
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in practice we will not be able to do this 
algebraically but will need a computer package



Breslow’s approximation
The Cox PH model assumes there is one death at time tj. If instead there are dj>1 
deaths at time tj the modelling becomes much more complex because all of the 
possible combinations of the dj deaths out of R(tj) need to be included in the 
likelihood function.

In this scenario, “Breslow’s approximation” is sometimes used:

        exp(β.sj 
T)

     ∑exp(β.zi 
T)
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i є R(tj) 

L(β) ≈ ∏
j=1

k

dj

where sj is the sum of the z 
covariate vectors for the dj lives 
observed to die at time tj



Model fitting criteria
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assessing covariates
In PH models (including Cox) we need criteria for assessing the effects of the 
different covariates

the likelihood ratio statistic gives one method for doing this

   model 1 has p covariates

  model 2 has additional q covariates (so p+q in total)

  log Lp   = the maximised log-likelihood of model 1

  log Lp+q = the maximised log-likelihood of model 2

then

  likelihood ratio statistic = -2(log Lp – log Lp+q)
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likelihood ratio statistic comments
generally the likelihood ratio statistic will use the full likelihood function (the one 
used to derive MLEs) but for the Cox model it is okay to use it with partial 
likelihoods

this likelihood ratio statistic has an asymptotic [that is it approaches as a limit] χ2 
distribution on q degrees of freedom under the hypothesis that the additional q 
covariates have no effect when the first p covariates are there

further tests of interactions between different covariates will not be covered in 
this module
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2 model building strategies
start with null model that has no 
covariates then add new covariates one 
at a time and evaluate with likelihood 
ratio statistic

begin with full model that has all the 
possible covariates and use likelihood 
ratio statistics to eliminate covariates 
that have no statistically significant 
affect
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