
WEEK 6 NOTES

1. FOURIER SERIES

Definition 1.1. Let f(x) denote a function on an interval (−a, a). The Fourier series of f̂
is defined as

f̂(x) = a0 +
∞∑

n=1

an cos

(
πnx

a

)
+

∞∑
n=1

bn sin

(
πnx

a

)
where the coefficients a0, an and bn are given by

a0 ≡ 1

2a

∫ a

−a

f(x)dx,

an ≡ 1

a

∫ a

−a

f(x) cos

(
πnx

a

)
dx,

bn ≡ 1

a

∫ a

−a

f(x) sin

(
πnx

a

)
dx.

The key result concerning Fourier series is the following (no proof provided):

Theorem 1.2. If f(x) is a piecewise smooth function on the interval (−a, a) then the
Fourier series f̂(x) of f(x) converges pointwise to:

(i) f(x) if f(x) is continuous on x ∈ (−a, a);
(ii) 1

2 (f(x−) + f(x+)) if f(x) has a jump at x ∈ (−a, a).

Moreover, at the end points −a and a the Fourier series f̂(x) converges to 1
2 (f(−a) +

f(a)).

Note. One observes the following:

(i) the interval of definition is symmetric —namely, [−a, a];
(ii) if f(x) is an odd function on [−a, a] then an = 0, n ∈ N;

(iii) if f(x) is an even function on [−a, a] then bn = 0, n ∈ N.

Another important observation is the following: if f(x) in defined on the interval [0, a]
we can always extend it to the interval [−a, a] using either odd or even extensions. In
particular, if f(0) = 0 then the odd extension of f(x) is continuous and if f ′(0) = 0 then
the even extension of f(x) is smooth.

Some examples illustrate the above general discussion:

Example 1.3. Again, let x ∈ (−1, 1) and

f(x) = x.
1
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The function f(x) is odd so that an = 0. For bn one has that

bn =

∫ 1

−1

x sin(nπx)dx = 2

∫ 1

0

x sin(nπx)dx

= − 2x

nπ
cos(nπx)

∣∣∣∣1
0

+
1

nπ

∫ 1

0

cos(nπx)dx = − 2

nπ
(−1)n +

1

(nπ)2
sin(nπ)

∣∣∣∣1
0

=
2(−1)n+1

nπ
,

where it has been used that cos(nπ) = (−1)n. Hence the Fourier (sine) series is given by

f̂(x) =

∞∑
n=1

2(−1)n+1

nπ
sin(nπx).

The way f̂(x) approximates f(x) is illustrated in the following diagram:

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

The blue curve corresponds to a Fourier series with 5 terms, the yellow one with 10 and
the green one with 15 terms.

Example 1.4. Let x ∈ (−1, 1) and

f(x) =

{
−1 x < 0
1 x > 0

The function f(x) is odd, so that an = 0, n = 0, 1, 2, . . .. To compute bn we exploit that
f(x) is odd so that

bn =

∫ 1

−1

f(x) sin(πnx)dx

= 2

∫ 1

0

f(x) sin(πnx)dx = 2

∫ 1

0

sin(πnx)dx

= − 2

nπ
cos(nπx)

∣∣∣∣1
0

= − 2

nπ

(
cos(nπ)− cos 0

)
=

2

nπ

(
1 + (−1)n+1

)
.
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Hence, one has the Fourier (sine) series

f̂(x) =

∞∑
n=1

2

nπ

(
1 + (−1)n+1

)
sin(nπx).

The way f̂(x) approximates f(x) is illustrated in the following diagram:

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

The blue curve corresponds to a Fourier series with 10 terms, the yellow one with 20 and
the green one with 30 terms. Observe that at x = 0 (the point where f is discontinuous)
all the truncated Fourier series pass through the origin —this is consistent with the theory
about convergence discussed previously, Theorem 1.2.

The previous two examples from last week were for functions which are odd on [−1, 1].
Next is an example with a function which is even.

Example 1.5. Let x ∈ [−1, 1] and

f(x) =

{
1 + x x < 0
1− x x > 0

This function is even so that all the coefficients bn vanish. For the an’s one has

a0 =
1

2

∫ 1

−1

f(x)dx =

∫ 1

0

f(x)dx =

∫ 1

0

(1− x)dx = x

∣∣∣∣1
0

− 1

2
x2

∣∣∣∣1
0

=
1

2
.

Similarly,

an =

∫ 1

−1

f(x) cos(nπx)dx = 2

∫ 1

0

f(x) cos(nπx)dx = 2

∫ 1

0

(1− x) cos(nπx)dx

= 2

∫ 1

0

cos(nπx)dx− 2

∫ 1

0

x cos(nπx)dx =
2x

nπ
sin(nπx)

∣∣∣∣1
0

− 2x

nπ
sin(nπx)

∣∣∣∣1
0

− 2

(nπ)2
cos(nπx)

∣∣∣∣1
0

,

= − 2

(nπ)2
(
cos(nπ)− 1

)
=

2

n2π2
(1− (−1)n),

where in the second line above it has been used that∫
x cos(nπx)dx =

x

nπ
sin(nπx) +

1

n2π2
cos(nπx),
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which can be readily obtained using integration by parts. Accordingly, the Fourier (cosines)
series is given in this case by

f̂(x) =
1

2
+

∞∑
n=1

2

n2π2

(
1− (−1)n

)
cos(nπx).

Plots of the series truncated at various orders can be seen in the next figure.

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Finally, we conclud ethe discussion of Fourier series with an example of a non-symmetric
function showing that it must, necessarily, contain both the sine and cosine series.

Example 1.6. Let Let x ∈ [−1, 1] and

f(x) =

{
0 x < 0
x x > 0

In order to compute the Fourier series observe that∫
x cos(nπx)dx =

x

nπ
sin(nπx) +

1

n2π2
cos(nπx),∫

x sin(nπx)dx = − x

nπ
cos(nπx) +

1

n2π2
sin(nπx).

These formulae are readily obtained using integration by parts. Using these formulae one
readily finds that

a0 =
1

2

∫ 1

−1

f(x)dx =
1

2

∫ 1

−1

xdx =
1

4
,

an =

∫ 1

−1

f(x) cos(nπx)dx =

∫ 1

0

x cos(nπx)dx

=
x

nπ
sin(nπx)

∣∣∣∣1
0

+
1

n2π2
cos(nπx)

∣∣∣∣1
0

=
1

n2π2

(
(−1)n − 1

)
,

bn =

∫ 1

−1

f(x) sin(nπx)dx =

∫ 1

0

x sin(nπx)dx

= − x

nπ
cos(nπx)

∣∣∣∣1
0

+
1

n2π2
sin(nπx)

∣∣∣∣1
0

= − 1

nπ
(−1)n =

1

nπ
(−1)n+1.
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It follows then that the Fourier series is given by

f̂(x) =
1

4
+

∞∑
n=1

(−1)n+1

nπ

(
sin(nπx)− 1

nπ
cos(nπx)

)
.

Observe that it contains both sine and cosine contributions. Plots of the series truncated at
various orders can be seen in the next figure.

-1.0 -0.5 0.5 1.0
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0.6

0.8

1.0

2. EXAMPLE OF MIXED BOUNDARY CONDITIONS FOR INITIAL VALUE PROBLEM FOR
WAVE EQUATIONS ON THE INTERVAL

Let’s see another example of homogeneous wave equations on the interval but with
mixed boundary conditions. The strategy is the same as the one we saw last week by
separation of variables and change it to an eigenvalue problem. But it will be a variant of
the eigenvalue problem we saw last week due to different boundary conditions.

Example 2.1. 
Utt = c2Uxx

Ux(0, t) = 0, U(π, t) = 0

U(x, 0) = − cos 7x
2 , Ut(x, 0) = 0.

As a first step, we consider solutions with separated variables of the form U(x, t) =
X(x)T (t).

Plugging into the equation, we get

T̈ ·X = c2T ·X ′′

So T̈
c2T = X′′

X = −λ for some constant λ. And we get 2 equations{
X ′′ + λX = 0 (a)

T̈ + c2λT = 0 (b)

The equation (a) combined with the boundary conditions give rise to the following eigen-
value problem {

X ′′ + λX = 0

X ′(0) = 0, X(π) = 0.
(2.1)
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Claim 2.2. We claim again that the eigenvalues λ > 0.

Proof of Claim. Multiply both sides of (2.1) by X and integrate from 0 to π we get∫ π

0

X ′′(x)X(x)dx+

∫ π

0

λ[X(x)]2dx = 0

X ′(x)X(x)|π0 −
∫
[X ′(x)]2dx+ λ

∫ π

0

[X(x)]2dx = 0

X ′(π)X(π)−X ′(0)X(0) + λ

∫ π

0

[X(x)]2dx =

∫
[X ′(x)]2dx(2.2)

Now notice that X ′(π)X(π) = X ′(0)X(0) = 0 by the boundary conditions and∫ π

0

[X(x)]2dx > 0,

∫
[X ′(x)]2dx > 0

We must then from (2.2) that λ > 0. □

Now knowing λ > 0, we go back to the eigenvalue problem (2.1) and use the theory of
constant coefficients ODE that we reviewed in Week 1. the general solutions to (2.1) are

X(x) = c1 cos(
√
λx) + c2 sin(

√
λx),

and its derivative being

X ′(x) = −c1
√
λ sin(

√
λx) + c2

√
λ cos(

√
λx),

The boundary condition X ′(0) = 0 implies c2
√
λ = 0, namely c2 = 0. Because the

solutions are non-trivial, we have c1 ̸= 0.
The boundary condition X(π) = 0 then implies

cos(
√
λπ) = 0,

giving
√
λπ = π

2 + nπ, for any n = 1, 2, . . . . And the eigenvalues and eigenfunctions are

λn = (
1

2
+ n)2,

Xn(x) = cos[(
1

2
+ n)x].

Knowing λn, we can also solve (b) and get

Tn(t) = an cos[(
1

2
+ n)ct] + bn sin[(

1

2
+ n)ct].

The general solutions with this boundary condition is then

U(x, t) =

∞∑
n=1

Xn(x)Tn(t)

(2.3)

=

∞∑
n=1

an cos[(
1

2
+ n)x] cos[(

1

2
+ n)ct] +

∞∑
n=1

bn cos[(
1

2
+ n)x] sin[(

1

2
+ n)ct].
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Differentiate with respect to t we get

Ut(x, t)

(2.4)

=− (
1

2
+ n)c

∞∑
n=1

an cos[(
1

2
+ n)x] sin[(

1

2
+ n)ct] + (

1

2
+ n)c

∞∑
n=1

bn cos[(
1

2
+ n)x] cos[(

1

2
+ n)ct].

Plug in the initial conditions to (2.3) and (2.4), we have

− cos
7x

2
=

∞∑
n=1

an cos[(
1

2
+ n)x]

0 = (
1

2
+ n)c

∞∑
n=1

bn cos[(
1

2
+ n)x].

This tells us that bm = 0 for any m = 1, 2 · · · . Multiply the first identity above by
cos[( 12 +m)x] and integrate from 0 to π we get∫ π

0

− cos
7x

2
cos[(

1

2
+m)x]dx =

∞∑
n=1

∫ π

0

an cos[(
1

2
+ n)x] cos[(

1

2
+m)x]dx.

Recall from Proposition 3.1 in Week 5 notes that∫ π

0

an cos[(
1

2
+ n)x] cos[(

1

2
+m)x]dx =

{
2
π , n = m

0, n ̸= m.

We have the only non-zero am = 0 unless ( 12 +m) = 7
2 . Namely am = 0 for m ̸= 3 and

− 2

π
= a3 ·

2

π
a3 = 1.

Combining all the computation above, the solution to this mixed boundary initial value
problem for wave equation on the interval is

U(x, t) = − cos(
7

2
x) cos(

7

2
ct).

3. INHOMOGENEOUS WAVE EQUATIONS: WAVE EQUATIONS WITH A SOURCE

We consider in this section the following initial value problem for inhomogeneous wave
equation on the real line R. 

Utt − c2Uxx = ψ(x)

U(x, 0) = f(x)

Ut(x, 0) = g(x).

(3.1)

This is the mathematical model for the evolution of a vibrating string with a source of
external force acting on it.

We will first apply the Principle of Superposition from the notes of Week 1.
Consider the following 2 equations:

Vtt − c2Vxx = 0

V (x, 0) = f(x)

Vt(x, 0) = g(x),

(3.2)
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and 
Wtt − c2Wxx = ψ(x)

W (x, 0) = 0

Wt(x, 0) = 0.

(3.3)

We observe that: if V is a solution to (3.2) and W is a solution to (3.3), then U = V +W
is a solution to (3.1).

By the D’Almbert’s formula from Week 4, we get a solution V to (3.2) by

V (x, t) =
1

2
[f(x+ ct) + f(x− ct)] +

1

2c

∫ x+ct

x−ct

g(s)ds.

So we are left to solve (3.3), whose solution is given by the following Theorem called the
Duhamel’s Principle.

Theorem 3.1 (Duhamel’s Principle). If W̃ is a solution to the equation
W̃tt − c2W̃xx = 0

W̃ (x, 0) = 0

W̃t(x, 0) = ψ(x),

(3.4)

then

W (x, t) =

∫ t

0

(W̃ (x, t− s))ds(3.5)

is a solution to (3.3)

Proof. We differentiate W with respect to t once and get

∂

∂t
W (x, t) =

∂

∂t

∫ t

0

(W̃ (x, t− s))ds

=W̃ (x, t− s)|s=t +

∫ t

0

(W̃t(x, t− s))ds

=W̃ (x, 0) +

∫ t

0

(W̃t(x, t− s))ds

=

∫ t

0

(W̃t(x, t− s))ds.

Differentiating with respect to t again, we get

∂2

∂t2
W (x, t) =

∂

∂t

∫ t

0

(W̃t(x, t− s))ds

=W̃t(x, t− s)|s=t +

∫ t

0

(W̃tt(x, t− s))ds

=W̃t(x, 0) +

∫ t

0

(W̃tt(x, t− s))ds

=ψ(x) +

∫ t

0

(W̃tt(x, t− s))ds.
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Similarly, differentiating with respect to x twice, we get

∂2

∂x
W (x, t) =

∂2

∂x2

∫ t

0

(W̃ (x, t− s))ds

=

∫ t

0

(W̃xx(x, t− s))ds.

So combining these, we get

Wtt − c2Wxx =ψ(x) +

∫ t

0

(W̃tt(x, t− s))ds−
∫ t

0

(W̃xx(x, t− s))ds

=ψ(x) +

∫ t

0

[W̃tt − c2W̃xx](x, t− s)ds

=ψ(x),

where we used that W̃ satisfies W̃tt − c2W̃xx = 0.
Moreover, at time t = 0, the initial values of W satisfy

W (x, 0) =

∫ 0

0

(W̃ (x, t− s))ds = 0

Wt(x, 0) =

∫ 0

0

(W̃t(x, t− s))ds = 0.

□

On the other hand, we know the solution to (3.4) is given by D’Alembert’s formula as
follows

W̃ (x, t) =
1

2c

∫ x+ct

x−ct

ψ(r)dr.

So, using the Duhamel’s principle, we have

W (x, t) =
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)

ψ(r)drds.

Combining with our earlier observation using the principle of superposition, the solution
to (3.1) is then

U(x, t) =V (x, t) +W (x, t)

(3.6)

=
1

2
[f(x+ ct) + f(x− ct)] +

1

2c

∫ x+ct

x−ct

g(s)ds+
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)

ψ(r)drds.

Example 3.2. Solve the following inhomogeneous wave equation on the real line.
Utt − c2Uxx = cosx

U(x, 0) = −1

Ut(x, 0) = 1
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We can apply the formula (3.6) with ψ(x) = cosx, f(x) = −1, g(x) = 1.

U(x, t) =
1

2
[f(x+ ct) + f(x− ct)] +

1

2c

∫ x+ct

x−ct

g(s)ds+
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)

ψ(r)drds

=
1

2
[−1− 1] +

1

2c

∫ x+ct

x−ct

1ds+
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)

cos rdrds

=− 1 +
2ct

2c
+

1

2c

∫ t

0

[sin(x+ ct− cs)− sin(x− ct+ cs)]ds

=− 1 + t+
1

2c

1

−c
[− cos(x+ ct− cs)]|t0 −

1

2c

1

c
[− cos(x− ct+ cs)]|t0

=− 1 + t+
cosx

c2
− cos(x+ ct) + cos(x− ct)

2c2


