
Dr K Clough, Topics in Scientific computing, Autumn term 2023

Week 4: More on ODEs
- Higher order ODEs, higher order explicit methods



Suggestions for those who still feel 
unfamiliar with python
1. Watch the videos that I have recorded of the first two lectures - I have 

slowed down the introductions here and you can pause and replay them.


2. Check out the (very short and readable) book “Think Python 2” that I 
recommend on the reading list - it is available open source here:  
https://greenteapress.com/wp/think-python-2e/ along with example code. 
(You can skip over Chapters 8-14.)


3. The CodeAcademy course on Python3 can be obtained for free 
(https://www.codecademy.com/learn/learn-python-3). It says 24 hours but 
you can probably skim some aspects and do it is less time.



Suggestions for those who want more 
challenges!
https://adventofcode.com 



Suggestions for those who want more 
challenges!
https://adventofcode.com 



Plan for today
1. Revision of last week - Classes, ODEs and integration


2. The trouble with Euler - stability and how to fix it - methods with intermediate 
steps (midpoint and explicit Runge Kutta methods)


3. How to make a higher order ODE into a first order one


4. Coursework - revision of the physical scenario and grading details


5. Tutorial this week - classes, multistep methods and second order ODEs



Classes

Classes 
encapsulate all the 
attributes of some 
concept or thing, 

and all the 
methods that 

could be applied 
to it



Classes

TOP TIP: 
A useful strategy 

for more 
complicated 

classes is to keep 
the init minimal 
and let the user 

add attributes later 



Ordinary differential equations

What are the features of this ODE?




d2x
dt2

+
dx
dt

+ x2 + x − 1 = sin(t)



Ordinary differential equations



d2x
dt2

+
dx
dt

+ x2 + x − 1 = sin(t)

Not autonomousNon linearSecond order

One dependent variable 
x so dimension 1

One independent variable t 
so ODE not PDE



x=2

Euler’s method







dx
dt

= x2 + x − 1

x(t = 0) = 1

t

x

x=1

t=1 t=2

Δx ≈ (x2 + x − 1) Δt



Euler’s method

The global error is related to 
the step size delta_t, so can 

reduce it, or use a better 
method to estimate the 
gradient (more today!)



Where we don’t know the 
solution, we need  
3 RESOLUTIONS  

to test convergence - if we 
double the resolution, the 

differences should scale as 


 


For a k-th order method

yN=8 − yN=4

yN=4 − yN=2
=

1
2k

Convergence of Euler’s method (order 1)
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The trouble with Euler’s method - convergence
I asserted that the Euler method was 1st order accurate, so error was 
proportional to the step size  - how did I know this?


First, it comes from the truncated Taylor series expansion of the function





Define the error as the value of the function relative to the true value 





Can show (exercise for tutorial) that 

h

y(tk+1) = y(tk + h) = y(tk) + h
dy
dt tk

+ O(h2)

ȳ(t)

ϵ(tk) = y(tk) − ȳ(tk)

ϵ(tk+1) = ϵ(tk) + O(h2)



The trouble with Euler’s method - convergence
Can show that   so local truncation error is order 


But then the number of steps taken in total is inversely proportional to h





So overall the global truncation error is 


We call this a first order method.


This means that doubling the number of steps only halves the error, which is not 
great - we find very slow convergence as we increase resolution

ϵ(tk+1) = ϵ(tk) + O(h2) h2

N =
tf − ti

h
N × O(h2) = O(h)



The trouble with Euler’s method - stability
A worse problem is the stability of Euler’s method.

dy
dt

= − 10t



The trouble with Euler’s method - stability
At low resolutions the error is oscillating and growing exponentially - this is not 
bad convergence, this is numerical instability

dy
dt

= − 10t



The trouble with Euler’s method - stability
At low resolutions the error is oscillating and growing exponentially - this is not bad 
convergence, this is numerical instability: 

A spurious feature in a numerical solution, not present in the exact solution, that grows 
with time and dominates over the real, physical solution.  

We derive it by considering perturbing the solution by a small amount (maybe due to 
numerical round off errors), so that:





Can show (exercise for the tutorial) that: 

       where                    (e.g.  )

yk = yk + δk

δk+1 = (1 + h
∂f
∂y ) δk f =

dy
dt

dy
dt

= − 10y



The trouble with Euler’s method - stability
Can show (exercise for the tutorial) that: 

       where                    (e.g.  ) 

This will grow exponentially when:


           or     

δk+1 = (1 + h
∂f
∂y ) δk f =

dy
dt

dy
dt

= − 10y

1 + h
∂f
∂y

> 1 ⟹
∂f
∂y

> 0
∂f
∂y

>
2
h



Using intermediate estimates - the midpoint method

Can achieve stability by using intermediate estimates in calculating the full time 
step.


e.g. the midpoint method is stable and has second order global error


      where         

 

Always use this in preference to Euler!

yk+1/2 = yk +
1
2

h f(yk, tk) f =
dy
dt

yk+1 = yk + h f(yk+1/2, tk+1/2)



Midpoint method



dy
dt

= y2 + y − 1

y(t = 0) = 1
t

Y

y(t)

Δt/2 Δt

Initial gradient

y(t+Δt)



Midpoint method



dy
dt

= y2 + y − 1

y(t = 0) = 1
t

Y

y(t)

Midpoint gradient

Δt/2 Δt

Initial gradient

y(t+Δt)



Midpoint method



dy
dt

= y2 + y − 1

y(t = 0) = 1
t

Y

y(t)

Midpoint gradient

Δt/2 Δt

Midpoint gradient

Initial gradient

y(t+Δt)



Midpoint method



dy
dt

= y2 + y − 1

y(t = 0) = 1
t

Y

y(t)

Midpoint gradient

Δt/2 Δt

Midpoint gradient

Initial gradient

y(t+Δt)



Runge-Kutta methods
Can achieve stability by using intermediate estimates in calculating the full time 
step. How about using even more intermediate points?


The most common method is the 4th order method, often referred to as “RK4” 



Scipy’s solve_ivp() uses RK45 by default
• This does not mean it is 45th order accurate!!


• The method takes a 4th order RK4 step AND a 5th order RK4 step and uses 
the difference to estimate the step error. If it is over some threshold rtol it will 
reduce the step size it takes.


• For solutions where you need greater accuracy (e.g., many oscillations, or 
orbits HINT HINT) you may 
need to reduce rtol.



All method discussed so far have been explicit 
methods, what is the alternative and why use it?

An explicit result is one where the variable we want, perhaps , can be written 
explicitly in terms of quantities we know:





Implicit methods will instead result in equations like:





Where we cannot easily isolate and solve for the quantity we want. 


These will be important for stif problems (those with several different timescales)

yk+1

yk+1 = eyk + sin(tk) + y4
k + . . .

yk+1 + y4
k+1 + 1/yk+1 = eyk + sin(tk) + y4

k + . . .
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1. Revision of last week - Classes, ODEs and integration


2. The trouble with Euler - stability and how to fix it - methods with intermediate 
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3. How to make a higher order ODE into a first order one


4. Coursework - revision of the physical scenario and grading details


5. Tutorial this week - classes, multistep methods and second order ODEs



How do I integrate second order derivatives numerically?

t

y

d2y
dt2

−
dy
dt

+ f(y, t) = 0

dv
dt

− v + f(y, t) = 0

dy
dt

= v

Δv = Δt (v − f(y, t))

Δy = v Δt

{

Δt

y(t)

y(t) + Δy

1. Decompose the 
second order 

equation into two 
first order ones

2. Solve as a 
dimension 2 

first order 
system



Example: the forced harmonic oscillator

d2y
dt2

+ y = sin(ωf t)

dv
dt

= − y + sin(ωf t)

dy
dt

= v

{



Example: the forced harmonic oscillator

Forced harmonic oscillator

In a “phase plot” we plot y 
against v.


This often tells us about the 
energy in a system, or 
whether some quantities are 
conserved.


It also tells us if there is a 
stable attractor solution - 
often all initial conditions will 
drive the system to the same 
trajectory in phase space.

Free harmonic oscillator
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Coursework - Trisolaris, the three body problem



Coursework - Trisolaris, the three body problem



Coursework - Trisolaris, the three body problem



Coursework - Trisolaris, the three body problem

1. Two body 
problem



Coursework - Trisolaris, the three body problem

2. Three body 
problem



Coursework - Trisolaris, the three body problem

3. What is they can 
merge? (You only 
have to do 3 of 

these!)



Coursework - Trisolaris, the three body problem
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Tutorial week 4

Implement the 
midpoint method in an 
ExplicitIntegrator class 

- more practise with 
classes



Tutorial week 4

Write a 
VanDerPolOscillator class 
- 2nd order ODE, need to 
convert to a first order one


