Week 4: More on OD

- Higher order OD

Suggestions for those who still feel
unfamiliar with python

1. Watch the videos that | have recorded of the first two lectures - | have
slowed down the introductions here and you can pause and replay them.

2. Check out the (very short and readable) book “Think Python 2” that |
recommend on the reading list - it is available open source here:
https://greenteapress.com/wp/think-python-2e/ along with example code.
(You can skip over Chapters 8-14.)

3. The CodeAcademy course on Python3 can be obtained for free
(https://www.codecademy.com/learn/learn-python-3). It says 24 hours but
you can probably skim some aspects and do it is less time.

Suggestions for those who want more
challenges!

https://adventofcode.com

The first puzzles will unlock on December 1st at midnight EST (UTC-5). See you then!

In the meantime, you can still access past

Also, starting this December, please

Suggestions for those who want more
challenges!

https://adventofcode.com

--- Day 20: Grove Positioning System ---

It's finally time to meet back up with the Elves. When you try to contact
them, however, you get no reply. Perhaps you're out of range?

You know they're headed to the grove where the star fruit grows, so if
you can figure out where that is, you should be able to meet back up with
them.

Fortunately, your handheld device has a file (your puzzle input) that
contains the grove's coordinates! Unfortunately, the file 1is encrypted -
just in case the device were to fall into the wrong hands.

Maybe you can decrypt it?

When you were still back at the camp, you overheard some Elves talking
about coordinate file encryption. The main operation involved 1in
decrypting the file 1is called mixing.

Plan for today

1. Revision of last week - Classes, ODEs and integration

2. The trouble with Euler - stability and how to fix it - methods with intermediate
steps (midpoint and explicit Runge Kutta methods)

3. How to make a higher order ODE into a first order one
4. Coursework - revision of the physical scenario and grading details

5. Tutorial this week - classes, multistep methods and second order ODEs

Classes

Classes
encapsulate all the
attributes of some

concept or thing,
and all the
methods that
could be applied
to it

Cat class

class FluffyCat :

Represents a fluffy cat

Attribute: colour

Methods: print the colour of the cat, change colour of cat

cat_colours = ["black", "ginger", "pink"]

constructor function

def __init_ (self, colour = cat_colours[0]):

self.colour = colour

def print_colour(self) :
print(self.colour)

def change_colour(self, new_colour) :
assert new_colour in self.cat_colours,
self.colour = new_colour

my_cat = FluffyCat()
my_cat.change_colour(FluffyCat.cat_colours[2])
my_cat.print_colour()

my_cat.change_colour("green") #Returns an error

pink

'Need to specify one of the allowed cat colours'

CatHome class

Classes class CatHome :

Attributes : some number of cats >=2

Methods: write the cat colours

TOP TIP # constructor function

def __init_ (self):

A userI Strategy self.list_of_citg = []

self.num_cats =
self._is_defined = False
fC)r rT1()r€3 print(“Class requires addition of at least 2 cats to be defined")

C)()fT]F)|i()EitEB(j def add_cat(self, new_cat) :
classes is to keep Se1t.list of_cats. append(new.cat)
e _ self.num_cats += 1
the init minimal et
and Iet the user self._is_defined = True

print("Cat Home definition complete!")

EiCjCj Eittrit)LJteess IEitGBr elsepi‘int(“Need to add another cat to make a cat home")

def print_cats_colours(self) :
assert self._is_defined, "Insufficient cats added, Cat Home not defined!"

for cat in self.list_of_cats :
cat.print_colour()

Ordinary differential equations

What are the features of this ODE?

d*x dx 5 ,
—+—+x"+x—1 = sim()
dr? dt

Ordinary differential equations

One independent variable t One dependent variable
so ODE not PDE X sO dimension 1

Second order Non linear Not autonomous

Euler’s method

X=2 ," §

7

x(t=0)=1 X=1 ¢ / Ax~ (x*+x—1) At

t=1 t=2 t

Euler’s method

Note that the function has to take t as the first argument and y as the second
def calculate_dydt(t, y):

""""""Returns the gradient dy/dt for the given function"""

dydt = yxy +y - 1

return dydt

max_time = 0.5

N_time_steps = 4

delta_t = max_time / N_time_steps

t_solution = np.linspace(0.0, max_time, N_time_steps+1l) # values of independent variable
y® = np.array([1.0]) # an initial condition, y(0) = y@

Euler's method
increase the number of steps to see how the solution changes
y_solution = np.zeros_like(t_solution)
y_solution([@] = y@
for itime, time in enumerate(t_solution) :
if itime > 0 :
dydt = calculate_dydt(time, y_solution[itime-1])
y_solution[itime] = y_solution[itime-1] + dydt * delta_t

plt.plot(t_solution, y_solution, '-.',label="Euler's method")

16

15

14

13

12

11

10

= Euler's method

true
s/.
-
e
.
~
e
L~
T
-
-
-
o
L~
/'/
./',
000 005 0.10 015 020 025 030 035

The global error is related to
the step size delta_t, so can
reduce it, or use a better
method to estimate the
gradient (more today!)

Convergence of Euler’s method (order 1)

Where we don’t know the
solution, we need
3 RESOLUTIONS
to test convergence - if we
double the resolution, the
differences should scale as

YN=8 — YN=4 1
YN=4 — YN=2 2k

For a k-th order method

204 — = Euler's method N = 2 L
error N=2 .
”~ -
—+= Euler's method N = 4 T
-== error N=4 .~ AT
15 7 { = /'/) —— -
Euler's methodN=8 _.=.—"_ . .=
-== error N=8 =
>10 4 =
0.5 1 /,,/
00_ ____---::::"—':: —————————
0.0 0.1 0.2 0.3 04 0.5
t

Plan for today
 Beviionof. « Classes. ODES and. .

2. The trouble with Euler - stability and how to fix it - methods with intermediate
steps (midpoint and explicit Runge Kutta methods)

3. How to make a higher order ODE into a first order one
4. Coursework - revision of the physical scenario and grading details

5. Tutorial this week - classes, multistep methods and second order ODEs

The trouble with Euler’s method - convergence

| asserted that the Euler method was 1st order accurate, so error was
proportional to the step size /i - how did | know this?

First, it comes from the truncated Taylor series expansion of the function

dy)
V() = Y+ h) = y(@) + hE + O(h°)

Ik

Define the error as the value of the function relative to the true value y(7)

e(ty) = y() — y()

Can show (exercise for tutorial) that e(f,,) = () + O(h?)

The trouble with Euler’s method - convergence

Can show that e(f;,) = e(f) + O(h?) so local truncation error is order h?

But then the number of steps taken in total is inversely proportional to h
=1

h
So overall the global truncation error is N X O(h?) = O(h)

N =

We call this a first order method.

This means that doubling the number of steps only halves the error, which is not
great - we find very slow convergence as we increase resolution

The trouble with Euler’s method - stability

A worse problem is the stability of Euler’'s method.

20 1
15 - dy
10 - — = —10¢
dt
0.5
> 00
—+= Euler's method N=5
-0.5 Euler's method N= 10
210 —+= Euler's method N= 20
' — = Euler's method N= 40
-1.5 solve_ivp()
-2.0

0.0 0.2 0.4 0.6 0.8 10

The trouble with Euler’s method - stability

At low resolutions the error is oscillating and growing exponentially - this is not
bad convergence, this is numerical instability

10 1 7N
./. \.
| 7
5 y; \.\ dy
— - dt
-5 4 ' \
> \
-10 - \ —+= Euler's method N= 3
\ Euler's method N=5
-15 - '\‘ — = Euler's method N= 10
\ —+= Euler's method N= 20
=20 1 \ Euler's method N= 40
. _. — solve_ivp()
0.0 0.2 04 0.6 0.8 10

The trouble with Euler’s method - stability

At low resolutions the error is oscillating and growing exponentially - this is not bad
convergence, this is numerical instability:

A spurious feature in a numerical solution, not present in the exact solution, that grows
with time and dominates over the real, physical solution.

We derive it by considering perturbing the solution by a small amount (maybe due to
numerical round off errors), so that:

Vi =Y+ 0,

Can show (exercise for the tutorial) that:

5 1405 where =2 eo 2= _ 10y
— — wnere = — e.q. — = —
kel oy k dt J dt ¥

The trouble with Euler’s method - stability

Can show (exercise for the tutorial) that:

5 1405 where f=2 ea 2= _ 10y
= — where = — e.g —=-—
e oy) * dt I >
This will grow exponentially when:
0 0 0 2
1 + h—f > 1 - —f >0 or —f > —
oy oy oy h

Using intermediate estimates - the midpoint method

Can achieve stability by using intermediate estimates in calculating the full time
step.

e.g. the midpoint method is stable and has second order global error

dy

1
=v,+—h 1 where = —
Yier12 = Vit 2 SO 1) f 7

Yiel = Ve T 0 fOis1/25 tes10)

Always use this in preference to Euler!

Midpoint method

Y,
y(t+At)

dy ,

— =vy“+y—-1

" y Ty

ye=0)=1

-9

-

yit) ¢ ~ Initial gradient

At/?2

At

>

t

Midpoint method

YA
y(t+At)
b
dt - ’ //,// Midpoint gradient
-7 o
y(t — O) — 1 yit) @ ~ Initidl gradient

At/2 At t

Midpoint method

dy ,
— =y +y—-1
" y Ty

yig=0)=1

y(t+At)

Y,

«

7

Midpoint gradien; s

7

7 - 7/
-~

Initi] gradient

7

s T\/Iidpoint gradient

At/?2

>

Ar t

Midpoint method

Y,
y(t+At)
dy ,
— =y24y—1
m y Ty
yi=0=1 %

Runge-Kutta methods

Can achieve stability by using intermediate estimates in calculating the full time
step. How about using even more intermediate points?

The most common method is the 4th order method, often referred to as “RK4”

Explicit Runge—Kutta methods |edit]

The family of explicit Runge—Kutta methods is a generalization of the RK4 method mentioned above. It is given by

Ynt1 =Yn +h Y biks, Examples |edit]
=1
where!®! 0 The RK4 method falls in this framework. Its tableau is''®!

cy | a;

kl o f(tneyn)s o b 0

ky = f(tn + c2h,yn + (a21k1)h), C3|a31 @32 172|172

ks = f(t, +csh,yn 31k 30ka)h), o

3'f(csh,yn + (as1ky + aszaka)h), 1] 1/2| 0 1/2
: e inis 110 0 1
qu - f(tn + Cgh, yn + (ale kl 4 a‘.q.zk:z + R ! T qui‘)h) Cs asl a-s.? aS;S—l
by by --- by b, 1/6 1/3 1/3 1/6

Scipy’s solve_ivp() uses RK45 by default

 This does not mean it is 45th order accurate!!

 The method takes a 4th order RK4 step AND a 5th order RK4 step and uses

the difference to estimate the step error. If it is over some threshold rtol it will
reduce the step size it takes.

* For solutions where you need greater accuracy (e.g., many oscillations, or
orbits HINT HINT) you may . | . ,
need to reduce rtol. ST e T o et i b

All method discussed so far have been explicit
methods, what is the alternative and why use it?

An explicit result is one where the variable we want, perhaps y,_ {, can be written
explicitly in terms of quantities we know:

Vip] = €%+ sin(f) + v+ . ..
Implicit methods will instead result in equations like:
Vier + Vit + Uy = e +sin(@) + v + . ..
Where we cannot easily isolate and solve for the quantity we want.

These will be important for stiff problems (those with several different timescales)

Plan for today

3. How to make a higher order ODE into a first order one
4. Coursework - revision of the physical scenario and grading details

5. Tutorial this week - classes, multistep methods and second order ODEs

How do | integrate second order derivatives numerically?

dy % —v+f(y,H=0 1. Decompose the
— = 4+ f(y,H)=0 sechd.order
dt dy equation into two
PR first order ones
N
Y
Av = At (v —f(y,1)) 2. Solve as a
y(1) + Ay pead dimension 2
_ -7 first order
1) @ Ay =v At system
At ;

Example: the forced harmonic oscillator

Note that the function has to take t as the first argument and y as the second
def calculate_dydt(t, y):

"""Returns the gradient dy/dt for the forced harmonic oscillator"""

dydt = np.zeros_like(y)

dydt[1] = -y[@] + np.sin(@.3x%t)

dydt[0] = y[1]

return dydt

d*y ,
nax. tine - 50.0 — +y = sin(wyf)

N_time_steps = 200
y0 = np.array([2.0, 0.0]) dl-2
t_solution = np.linspace(0.0, max_time, N_time_steps+1)

solution = solve_ivp(calculate_dydt, [0,max_time], y@, t_eval=t_solution)

plt.plot(solution.t, solution.y[@], '-', label="solve_ivp()")

plt.grid()

plt.xlabel("t", fontsize=16)
plt.ylabel("y", fontsize=16)
plt.legend(bbox_to_anchor=(1.05, 0.5));

3

2 dv + sin(@)
1 — = — S1INn(w
> 0 Cit)/ &f

— solve_ivp()

Example: the forced harmonic oscillator

In a “phase plot” we plot y
against v.

Forced harmonic oscillator > ° ,
This often tells us about the

energy in a system, or
whether some quantities are

y conserved.
15 It also tells us if there is a
. stable attractor solution -
Free harmonic oscillator > «; often all initial conditions will

-05

drive the system to the same
trajectory in phase space.

-2.0

-20 -15 -10 -05 00 05 10 15 20

y

Plan for today

4. Coursework - revision of the physical scenario and grading details

5. Tutorial this week - classes, multistep methods and second order ODEs

Coursework - Trisolaris, the three body problem

Annals of Mathematics, 152 (2000), 881-901

A remarkable periodic solution
of the three-body problem
in the case of equal masses

By ALAIN CHENCINER and RICHARD MONTGOMERY

~V/2 t=0 () t =27 =T/6 (E,)

2 9 !
THE THREE-BODY)
PROBLEM TRILOGY A ¥-V/2
X
2
R

9 t=T=T/12 (M) /
Figure 1 (Initial conditions computed by Carles Simé)

@1=—a9=0.97000436—0.24308753i,03 =0; V =i 3=—21=—2d2=—0.93240737—0.86473146i
T=12T=6.32591398, I(0)=2, mi=ma=ma=1

Coursework - Trisolaris, the three body problem

Coursework - Trisolaris, the three body problem

Coursework 1 : The three body problem

You should complete your coursework in this notebook and hand it in via QMPIus by 5pm on Friday of week 9 (24 November).

The broad goal of the project is to write code to model coplanar stellar systems (i.e., all the motion is in the x and y directions) with up to three stars.

Your code must model the following 3 scenarios

1. A two body system made up of two stars with a mass ratio 1:2 undergoing multiple stable orbits (which may be elliptic). The stars obey Newton's
law:

(You can work in units in which we set G = 1 and the masses are order 1 numbers, but you can also choose to work in real units, as you prefer.)
2. Athree body system made up of 3 stars of equal mass. Stars are assumed to be point like objects and so they cannot collide with each other
(they simply pass through if at the same location). Model the stable solution discovered by Cris Moore and proved by Chenciner and Montgomery,
described here and one in which they display chaotic behaviour, with one star being ejected from the system.
3. You now have a system of hypergiants. Hypergiants are the most massive stars, and so they cannot be treated as point like objects. Now if they
get within some distance of each other, they should merge (HINT: maybe we could say that they "add" themselves...) into a single hypergiant with
a combined mass of the two objects. Since momentum is conserved, we will also require that:

- - -
(m, +m2)vnew =mv; +mv;

In this case, set up initial conditions so that you have 3 hypergiants initially, and a few orbits are obtained before a merger of two of the objects.
The hypergiants should have 3 similar but different masses, e.g. a ratio of 0.8 : 1.0 : 1.2. You can choose the distance at which they merge, but it
should be proportional to the masses of the two objects that are merging.

Coursework - Trisolaris, the three body problem

- r -

m; X mo;

/2

Fl =.:_"=G

1. Two body
problem

Coursework - Trisolaris, the three body problem

2. Three body
problem

Coursework - Trisolaris, the three body problem

3. What is they can
merge? (You only
have to do 3 of
thesel!)

Coursework - Trisolaris, the three body problem

Required components
To obtain full marks your solutions must include the following components:

1. Classes for stars, supergiants and stellar systems with multiple star components. Use of inheritance where
possible and appropriate

(HINT: try to think ahead - what features of scenario 1 might you want to reuse in scenarios 2 and 3? You can save time
coding by making it sufficiently general from the start.)

2. Plots of the orbital trajectories of the stars over time

3. Phase diagrams for the position and velocities of the component stars.

4. Comparison of two explicit integration techniques - the first should be scipy's solve_ivp() and the second should
be the midpoint method (or another Runge Kutta method of specified order). For the latter you should confirm the
order of convergence of the solution is as expected.

(HINT: you may want to investigate the rtol parameter for solve_ivp().)

5. Documentation of the code appropriate for new users who have a basic familiarity with python and ODEs (your
colleagues on this course, for example!), implemented in markdown around the code blocks.
6. Defensive programming techniques including asserts and tests of key functionality

Marking scheme

* 50% for working code that correctly implements all of the requested physical scenarios

e 20% for use of defensive programming techniques - asserts and tests implemented to prevent user error and
check functioning correctly, including a convergence test

e 20% for readability of code, following the agreed naming conventions of the course, appropriate commenting

* 10% for appropriate documentation of the code implemented in markdown format

Plan for today

5. Tutorial this week - classes, multistep methods and second order ODEs

Tutorial week 4

ExplicitIntegrator class

class ExplicitIntegrator :

Contains explicit methods to integrate ODEs

attributes: the function to calculate the gradient dydt, max_time,

N_time_steps, method

methods: calculate_solution, plot_solution

integration_methods = ["Euler", "MidPoint", "RK4"]

constructor function
def __init__(self, dydt, max_time=0, N_time_steps=0, method = "Euler"):

self.dydt = dydt # Note that we are passing in a function, this is ok in python
self.method = method
assert self.method in self.integration_methods, 'chosen integration method not imf

Make these private - restrict getting and setting as below
self._max_time = max_time
self._N_time_steps = N_time_steps

Derived from the values above

self._delta_t = self.max_time / self.N_time_steps
self._t_solution = np.linspace(0.0, max_time, N_time_steps+1)
self._y_solution np.zeros_like(self._t_solution)

Implement the
midpoint method in an
Explicitintegrator class

- more practise with
classes

Tutorial week 4

ACTIVITY 3:

Write a class that contains information about the Van der Pol oscillator with a source, and
solves the second order ODE related to its motion using scipy's solve_IVP method:

d’y 2y dy _
= —2a(1 =y +y=f@)

where a is a damping factor. Your class should allow you to pass in the source function f(t)
as an argument that can be changed.

HINT: It may help to start with the Ecosystem class in the solutions for last week's tutorial

and modify this.
What parts or features of the differential equation tell us if it is: .
Write a
1. Second or first order .
> AUtONOMOUS VanDerPolOscillator class
3. Linear/ non linear - 2nd order ODE, need to

4. Dimension 1 or 2?

convert to a first order one

