
Dr K Clough, Topics in Scientific computing, Autumn term 2023

Week 4: More on ODEs
- Higher order ODEs, higher order explicit methods

Suggestions for those who still feel
unfamiliar with python
1. Watch the videos that I have recorded of the first two lectures - I have

slowed down the introductions here and you can pause and replay them.

2. Check out the (very short and readable) book “Think Python 2” that I
recommend on the reading list - it is available open source here:  
https://greenteapress.com/wp/think-python-2e/ along with example code.
(You can skip over Chapters 8-14.)

3. The CodeAcademy course on Python3 can be obtained for free 
(https://www.codecademy.com/learn/learn-python-3). It says 24 hours but
you can probably skim some aspects and do it is less time.

Suggestions for those who want more
challenges!
https://adventofcode.com

Suggestions for those who want more
challenges!
https://adventofcode.com

Plan for today
1. Revision of last week - Classes, ODEs and integration

2. The trouble with Euler - stability and how to fix it - methods with intermediate
steps (midpoint and explicit Runge Kutta methods)

3. How to make a higher order ODE into a first order one

4. Coursework - revision of the physical scenario and grading details

5. Tutorial this week - classes, multistep methods and second order ODEs

Classes

Classes
encapsulate all the
attributes of some
concept or thing,

and all the
methods that

could be applied
to it

Classes

TOP TIP: 
A useful strategy

for more
complicated

classes is to keep
the init minimal
and let the user

add attributes later

Ordinary differential equations

What are the features of this ODE?

d2x
dt2

+
dx
dt

+ x2 + x − 1 = sin(t)

Ordinary differential equations

d2x
dt2

+
dx
dt

+ x2 + x − 1 = sin(t)

Not autonomousNon linearSecond order

One dependent variable
x so dimension 1

One independent variable t
so ODE not PDE

x=2

Euler’s method

dx
dt

= x2 + x − 1

x(t = 0) = 1

t

x

x=1

t=1 t=2

Δx ≈ (x2 + x − 1) Δt

Euler’s method

The global error is related to
the step size delta_t, so can

reduce it, or use a better
method to estimate the
gradient (more today!)

Where we don’t know the
solution, we need  
3 RESOLUTIONS  

to test convergence - if we
double the resolution, the

differences should scale as

For a k-th order method

yN=8 − yN=4

yN=4 − yN=2
=

1
2k

Convergence of Euler’s method (order 1)

Plan for today
1. Revision of last week - Classes, ODEs and integration

2. The trouble with Euler - stability and how to fix it - methods with intermediate
steps (midpoint and explicit Runge Kutta methods)

3. How to make a higher order ODE into a first order one

4. Coursework - revision of the physical scenario and grading details

5. Tutorial this week - classes, multistep methods and second order ODEs

The trouble with Euler’s method - convergence
I asserted that the Euler method was 1st order accurate, so error was
proportional to the step size - how did I know this?

First, it comes from the truncated Taylor series expansion of the function

Define the error as the value of the function relative to the true value

Can show (exercise for tutorial) that

h

y(tk+1) = y(tk + h) = y(tk) + h
dy
dt tk

+ O(h2)

ȳ(t)

ϵ(tk) = y(tk) − ȳ(tk)

ϵ(tk+1) = ϵ(tk) + O(h2)

The trouble with Euler’s method - convergence
Can show that so local truncation error is order

But then the number of steps taken in total is inversely proportional to h

So overall the global truncation error is

We call this a first order method.

This means that doubling the number of steps only halves the error, which is not
great - we find very slow convergence as we increase resolution

ϵ(tk+1) = ϵ(tk) + O(h2) h2

N =
tf − ti

h
N × O(h2) = O(h)

The trouble with Euler’s method - stability
A worse problem is the stability of Euler’s method.

dy
dt

= − 10t

The trouble with Euler’s method - stability
At low resolutions the error is oscillating and growing exponentially - this is not
bad convergence, this is numerical instability

dy
dt

= − 10t

The trouble with Euler’s method - stability
At low resolutions the error is oscillating and growing exponentially - this is not bad
convergence, this is numerical instability:

A spurious feature in a numerical solution, not present in the exact solution, that grows
with time and dominates over the real, physical solution.

We derive it by considering perturbing the solution by a small amount (maybe due to
numerical round off errors), so that:

Can show (exercise for the tutorial) that:

 where (e.g.)

yk = yk + δk

δk+1 = (1 + h
∂f
∂y) δk f =

dy
dt

dy
dt

= − 10y

The trouble with Euler’s method - stability
Can show (exercise for the tutorial) that:

 where (e.g.)

This will grow exponentially when:

 or

δk+1 = (1 + h
∂f
∂y) δk f =

dy
dt

dy
dt

= − 10y

1 + h
∂f
∂y

> 1 ⟹
∂f
∂y

> 0
∂f
∂y

>
2
h

Using intermediate estimates - the midpoint method

Can achieve stability by using intermediate estimates in calculating the full time
step.

e.g. the midpoint method is stable and has second order global error

 where

Always use this in preference to Euler!

yk+1/2 = yk +
1
2

h f(yk, tk) f =
dy
dt

yk+1 = yk + h f(yk+1/2, tk+1/2)

Midpoint method

dy
dt

= y2 + y − 1

y(t = 0) = 1
t

Y

y(t)

Δt/2 Δt

Initial gradient

y(t+Δt)

Midpoint method

dy
dt

= y2 + y − 1

y(t = 0) = 1
t

Y

y(t)

Midpoint gradient

Δt/2 Δt

Initial gradient

y(t+Δt)

Midpoint method

dy
dt

= y2 + y − 1

y(t = 0) = 1
t

Y

y(t)

Midpoint gradient

Δt/2 Δt

Midpoint gradient

Initial gradient

y(t+Δt)

Midpoint method

dy
dt

= y2 + y − 1

y(t = 0) = 1
t

Y

y(t)

Midpoint gradient

Δt/2 Δt

Midpoint gradient

Initial gradient

y(t+Δt)

Runge-Kutta methods
Can achieve stability by using intermediate estimates in calculating the full time
step. How about using even more intermediate points?

The most common method is the 4th order method, often referred to as “RK4”

Scipy’s solve_ivp() uses RK45 by default
• This does not mean it is 45th order accurate!!

• The method takes a 4th order RK4 step AND a 5th order RK4 step and uses
the difference to estimate the step error. If it is over some threshold rtol it will
reduce the step size it takes.

• For solutions where you need greater accuracy (e.g., many oscillations, or
orbits HINT HINT) you may 
need to reduce rtol.

All method discussed so far have been explicit
methods, what is the alternative and why use it?

An explicit result is one where the variable we want, perhaps , can be written
explicitly in terms of quantities we know:

Implicit methods will instead result in equations like:

Where we cannot easily isolate and solve for the quantity we want.

These will be important for stif problems (those with several different timescales)

yk+1

yk+1 = eyk + sin(tk) + y4
k + . . .

yk+1 + y4
k+1 + 1/yk+1 = eyk + sin(tk) + y4

k + . . .

Plan for today
1. Revision of last week - Classes, ODEs and integration

2. The trouble with Euler - stability and how to fix it - methods with intermediate
steps (midpoint and explicit Runge Kutta methods)

3. How to make a higher order ODE into a first order one

4. Coursework - revision of the physical scenario and grading details

5. Tutorial this week - classes, multistep methods and second order ODEs

How do I integrate second order derivatives numerically?

t

y

d2y
dt2

−
dy
dt

+ f(y, t) = 0

dv
dt

− v + f(y, t) = 0

dy
dt

= v

Δv = Δt (v − f(y, t))

Δy = v Δt

{

Δt

y(t)

y(t) + Δy

1. Decompose the
second order

equation into two
first order ones

2. Solve as a
dimension 2

first order
system

Example: the forced harmonic oscillator

d2y
dt2

+ y = sin(ωf t)

dv
dt

= − y + sin(ωf t)

dy
dt

= v

{

Example: the forced harmonic oscillator

Forced harmonic oscillator

In a “phase plot” we plot y
against v.

This often tells us about the
energy in a system, or
whether some quantities are
conserved.

It also tells us if there is a
stable attractor solution -
often all initial conditions will
drive the system to the same
trajectory in phase space.

Free harmonic oscillator

Plan for today
1. Revision of last week - Classes, ODEs and integration

2. The trouble with Euler - stability and how to fix it - methods with intermediate
steps (midpoint and explicit Runge Kutta methods)

3. How to make a higher order ODE into a first order one

4. Coursework - revision of the physical scenario and grading details

5. Tutorial this week - classes, multistep methods and second order ODEs

Coursework - Trisolaris, the three body problem

Coursework - Trisolaris, the three body problem

Coursework - Trisolaris, the three body problem

Coursework - Trisolaris, the three body problem

1. Two body
problem

Coursework - Trisolaris, the three body problem

2. Three body
problem

Coursework - Trisolaris, the three body problem

3. What is they can
merge? (You only
have to do 3 of

these!)

Coursework - Trisolaris, the three body problem

Plan for today
1. Revision of last week - Classes, ODEs and integration

2. The trouble with Euler - stability and how to fix it - methods with intermediate
steps (midpoint and explicit Runge Kutta methods)

3. How to make a higher order ODE into a first order one

4. Coursework - revision of the physical scenario and grading details

5. Tutorial this week - classes, multistep methods and second order ODEs

Tutorial week 4

Implement the
midpoint method in an
ExplicitIntegrator class

- more practise with
classes

Tutorial week 4

Write a
VanDerPolOscillator class
- 2nd order ODE, need to
convert to a first order one

