
MTH6134 Statistical Modelling II
Lab sessions including output

Autumn 2023

Lab sessions built upon practicals provided by S Coad (formerly of QMUL).

Practical 1 - 2 and 4 October 2023 (Week 2)

This practical reminds you about the language and commands of R which you will
practice with the package RStudio. This package should be available if you are
using a university computer, or you may use your own laptop with your installation
of the package. If everything else fails, use the site rdrr.io/snippets/ to run
R commands. This last option only requires a browser.

Open RStudio and from the menu File>New File>R Script, open a new script
in which you will type commands (alternatively, use Control+Shift+N). Remember
to save this file for your records and for later practice.

The data

In this practical we revisit linear regression that you used in Statistical Modelling I.
Manatees are large, gentle sea creatures that live along the Florida coast. Many

manatees are killed or injured by powerboats. Below are data on powerboat regis-
trations (x), in thousands, and the number of manatees killed by boats (y) in Florida
in the years 1977 to 1987.

Year 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
x 447 460 481 498 513 512 526 559 585 614 645
y 13 21 24 16 24 20 15 34 33 33 39

Do the data provide any evidence of a linear relationship between the number of
powerboat registrations and the number of manatees killed by boats?

Entering and plotting the Data

First enter the x and y values as vectors in R:

x <- c(447,460,481,498,513,512,526,559,585,614,645)

y <- c(13,21,24,16,24,20,15,34,33,33,39)

Then produce a scatterplot of the data using
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plot(x,y,main="Plot of y against x")
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Does the relationship between y and x seem to be linear?

Fitting the Model

Fit a simple linear regression model to the data by

manatee <- lm(y ~ x)

To see the details of the fitted model, we use

summary(manatee)

##

## Call:

## lm(formula = y ~ x)

##

## Residuals:

## Min 1Q Median 3Q Max

## -9.1446 -2.1250 0.7302 3.2709 5.9383

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -38.29155 12.87323 -2.975 0.015588 *

## x 0.11870 0.02409 4.927 0.000817 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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##

## Residual standard error: 4.817 on 9 degrees of freedom

## Multiple R-squared: 0.7295,Adjusted R-squared: 0.6995

## F-statistic: 24.27 on 1 and 9 DF, p-value: 0.0008169

The values of the intercept β̂0 and the slope β̂1 can be seen from the output.
Add the fitted line to your scatterplot by using the following commands:

plot(x,y,main="Fitted Line Plot")

abline(manatee)
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To test H0 : β1 = 0, we look at the analysis of variance table:

anova(manatee)

## Analysis of Variance Table

##

## Response: y

## Df Sum Sq Mean Sq F value Pr(>F)

## x 1 563.32 563.32 24.273 0.0008169 ***

## Residuals 9 208.86 23.21

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

What are your conclusions?

Checking the Assumptions

To check the assumptions of the model, we examine the residual plots. We first plot
the standardised residuals against x:
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stres <- rstandard(manatee)

plot(x,stres,main="Standardised Residuals against x")
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Is there any reason to doubt the linearity of the model? Next, we plot the
standardised residuals against the fitted values:

fits <- fitted(manatee)

plot(fits,stres,main="Standardised Residuals against Fitted Values")
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Is there any reason to doubt that the variance is constant? Finally, we look at
the Q-Q plot:

qqnorm(stres,main="Q-Q Plot")

qqline(stres)
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Is there any reason to doubt the assumption that the errors are normally dis-
tributed?

Finishing the Session

Remember to save your files and log out.

5



Practical 2 - 9th (and 18th) October 2023 (Week

3)

This practical reminds you how to read data from a file into R and how to fit a
multiple linear regression model.

Diabetic Data

The file diabetic.csv on the module webpage contains data for 20 male insulin-
dependent diabetics who had been on a high carbohydrate diet for six months.
Compliance with the regime is thought to be related to age (x1), in years, body
weight as a percentage of ‘ideal’ weight for height (x2) and the percentage of calories
as protein (x3). The dependent variable is the percentage of total calories obtained
from complex carbohydrates.

Load the data into R as follows. First, you have to tell R where you have saved
the data. This is known as your working directory. You set this by telling R where
the data are. For example, it is probably convenient to save the data onto the G:

drive, in which case you use

setwd("G:")

You can check that it is correct by

getwd()

Now read in the data by

diabetic <- read.csv("diabetic.csv")

The data will have been read into R, but they are stored in four columns, and
we need to allocate the columns of the matrix to y, x1, x2 and x3. This is achieved
by

y <- diabetic[,1]

x1 <- diabetic[,2]

x2 <- diabetic[,3]

x3 <- diabetic[,4]

Check that data has been correctly read by looking at the first few rows using

head(diabetic)

## y x1 x2 x3

## 1 33 33 100 14

## 2 40 47 92 15

## 3 37 49 135 18

## 4 27 35 144 12

## 5 30 46 140 15

## 6 43 52 101 15

6



and examine the collection of pairwise scatterplots of data with

pairs(diabetic)
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Briefly describe what you observe.

Model 1

Fit a multiple linear regression model to the data in which y is linearly related to
each of the explanatory variables by

diabetic1 <- lm(y ~ x1 + x2 + x3)

Obtain the fitted model using summary. Save the fitted values and the standard-
ised residuals. Assess the assumptions of normality and constant variance of the
random errors by examining suitable residual plots. What are your conclusions?
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summary(diabetic1)

##

## Call:

## lm(formula = y ~ x1 + x2 + x3)

##

## Residuals:

## Min 1Q Median 3Q Max

## -10.3424 -4.8203 0.9897 3.8553 7.9087

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 36.96006 13.07128 2.828 0.01213 *

## x1 -0.11368 0.10933 -1.040 0.31389

## x2 -0.22802 0.08329 -2.738 0.01460 *

## x3 1.95771 0.63489 3.084 0.00712 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 5.956 on 16 degrees of freedom

## Multiple R-squared: 0.4805,Adjusted R-squared: 0.3831

## F-statistic: 4.934 on 3 and 16 DF, p-value: 0.01297

par(mfrow=c(1,2),mar=c(4,4,1,1))

qqnorm(rstandard(diabetic1),main="Q-Q Plot")

qqline(rstandard(diabetic1))

plot(diabetic1$fitted.values,rstandard(diabetic1),main="Residuals vs fitted")
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Model 2

Fit a multiple linear regression model to the data in which y is linearly related to
x2 and x3 by
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diabetic2 <- lm(y ~ x2 + x3)

Obtain the fitted model and save values as before. Assess the assumptions of
normality and constant variance of the random errors. Compare the two model fits.
Which one is best and why?

summary(diabetic2)

##

## Call:

## lm(formula = y ~ x2 + x3)

##

## Residuals:

## Min 1Q Median 3Q Max

## -10.6812 -3.9135 0.9464 4.0880 9.7948

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 33.13032 12.57155 2.635 0.01736 *

## x2 -0.22165 0.08326 -2.662 0.01642 *

## x3 1.82429 0.62327 2.927 0.00941 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 5.971 on 17 degrees of freedom

## Multiple R-squared: 0.4454,Adjusted R-squared: 0.3802

## F-statistic: 6.827 on 2 and 17 DF, p-value: 0.006661

par(mfrow=c(1,2),mar=c(4,4,1,1))

qqnorm(rstandard(diabetic2),main="Q-Q Plot")

qqline(rstandard(diabetic2))

plot(diabetic2$fitted.values,rstandard(diabetic2),main="Residuals vs fitted")
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Model 3

From looking at the initial results (Model 1), it is clear that x3 is the most important
term. Fit a univariate regression model explaining y in terms of x3 only and compare
it with the previous two models.

diabetic3 <- lm(y ~ x3)

summary(diabetic3)

##

## Call:

## lm(formula = y ~ x3)

##

## Residuals:

## Min 1Q Median 3Q Max

## -12.4979 -5.9829 0.9019 4.8870 10.6620

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 12.4787 11.4435 1.090 0.2899

## x3 1.5800 0.7131 2.216 0.0399 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 6.907 on 18 degrees of freedom

## Multiple R-squared: 0.2143,Adjusted R-squared: 0.1706

## F-statistic: 4.909 on 1 and 18 DF, p-value: 0.03986

Finishing the Session

Remember to save your files and log out.
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Practical 3 - 16th (and 25th) October 2023 (Week

4)

This practical introduces you to generalised linear models by modelling some binary
response probabilities.

Beetle Data

In bioassays, the response may vary with a covariate x termed the dose. Data for
a typical example involving a binary response are given in the file beetle.csv on
the module webpage. Here, a certain number of beetles (r) are exposed to various
concentrations of gaseous carbon disulphide, in milligrammes per litre, for five hours
and the number of beetles killed (y) is recorded. The dose is the base 10 logarithm
of the concentration.

The three columns of beetle.csv contain x, r and y in that order. Create
variables x, r and y from the columns of the data. The proportion of beetles killed
at each of the doses may be calculated using

beetle<-read.csv("beetle.csv")

x<-beetle[,1]

r<-beetle[,2]

y<-beetle[,3]

p <- y/r

Now plot these proportions against the doses by

plot(x,p,main="Plot of p against x")
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The purpose of this practical is to identify a model which provides a good de-
scription of the data.

Logistic Model

Fit a logistic model to the data in which the probability of a beetle being killed πi

at the ith dose xi satisfies the logit link

log
(

πi

1− πi

)
= β0 + β1xi

by

beetle1 <- glm(p ~ x,family=binomial(link=logit),weights=r)

Note that, since a logit link is the default one for the binomial distribution, it is
sufficient to put family=binomial as the second argument in this case.

Obtain the fitted model using summary. The standard errors of the intercept β̂0

and the slope β̂1 are the square roots of the diagonal elements of the inverse of the
estimated Fisher information matrix. Under the null hypothesis that the logistic
model describes the data, the residual deviance has an approximate χ2

6 distribution,
since there are eight doses and two parameters in the model. Does this model provide
a good fit?

summary(beetle1)->SB1

SB1

##

## Call:

## glm(formula = p ~ x, family = binomial(link = logit), weights = r)

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -60.717 5.181 -11.72 <2e-16 ***

## x 34.270 2.912 11.77 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 284.202 on 7 degrees of freedom

## Residual deviance: 11.232 on 6 degrees of freedom

## AIC: 41.43

##

## Number of Fisher Scoring iterations: 4

SB1$deviance

## [1] 11.23223

pchisq(q=SB1$deviance,df=SB1$df.residual,lower.tail=FALSE)

## [1] 0.08145881
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Probit Model

Fit a model to the data in which πi satisfies the probit link

Φ−1(πi) = β0 + β1xi,

where Φ denotes the standard normal distribution function, by

beetle2 <- glm(p ~ x,family=binomial(link=probit),weights=r)

Obtain the fitted model as before. Compare the two model fits. Are they similar?

summary(beetle2)->SB2

SB2

##

## Call:

## glm(formula = p ~ x, family = binomial(link = probit), weights = r)

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -34.935 2.648 -13.19 <2e-16 ***

## x 19.728 1.487 13.27 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 284.20 on 7 degrees of freedom

## Residual deviance: 10.12 on 6 degrees of freedom

## AIC: 40.318

##

## Number of Fisher Scoring iterations: 4

SB2$deviance

## [1] 10.11976

pchisq(q=SB2$deviance,df=SB2$df.residual,lower.tail=FALSE)

## [1] 0.1196985

Extreme Value Model

Fit an extreme value model to the data in which πi satisfies

log{− log(1− πi)} = β0 + β1xi

by
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beetle3 <- glm(p ~ x,family=binomial(link=cloglog),weights=r)

Here, cloglog means that a complementary log-log link is being used. Obtain
the fitted model as before. Which of the three models provides the best description
of the data?

summary(beetle3)->SB3

SB3

##

## Call:

## glm(formula = p ~ x, family = binomial(link = cloglog), weights = r)

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -39.572 3.240 -12.21 <2e-16 ***

## x 22.041 1.799 12.25 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 284.2024 on 7 degrees of freedom

## Residual deviance: 3.4464 on 6 degrees of freedom

## AIC: 33.644

##

## Number of Fisher Scoring iterations: 4

SB3$deviance

## [1] 3.446439

pchisq(q=SB3$deviance,df=SB3$df.residual,lower.tail=FALSE)

## [1] 0.7510816

## As additional help to find the best fitting model

## Plots of data and predictions, on the transformed scale

## Note that this will be covered later in week 6

par(mar=c(4,4,1,1),mfrow=c(1,3))

plot(x,log(p/(1-p))) ## approximate, see week 6

abline(a=beetle1$coefficients[1],b=beetle1$coefficients[2],col="black")

plot(x,qnorm(p)) ## approximate, see week 6

abline(a=beetle2$coefficients[1],b=beetle2$coefficients[2],col="black")

plot(x,log(-log(1-p))) ## approximate, see week 6

abline(a=beetle3$coefficients[1],b=beetle3$coefficients[2],col="black")
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### Computations of mean square error, ala regression

var(beetle1$residuals)

## [1] 0.2792107

var(beetle2$residuals)

## [1] 0.06596582

var(beetle3$residuals)

## [1] 0.02053847

Finishing the Session

Remember to save your files and log out.
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Practical 4 - 23rd October 2023 (Week 5)

This practical shows you how to fit a Poisson regression model to count data.

Count Data

The data below are counts (y) observed at various values of a covariate (x).

y 2 3 6 7 8 9 10 12 15
x -1 -1 0 0 0 0 1 1 1

Enter the x and y values as vectors in R. Call them x and y. Then produce a
scatterplot of the data. Is the variance constant?

Below we enter the data in R:

x<-c(-1,-1,0,0,0,0,1,1,1);

y<-c(2,3,6,7,8,9,10,12,15)

plot(x,y)
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What would
you comment about the variance of the data? Here is something to try:

for(i in unique(x)) print(c(i,sd(y[x==i]),log(sd(y[x==i]))))

## [1] -1.0000000 0.7071068 -0.3465736

## [1] 0.0000000 1.2909944 0.2554128

## [1] 1.0000000 2.5166115 0.9229133
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What do you conclude?

Linear Model

Fit a linear model to the data in which the mean response µi for covariate xi satisfies

µi = β0 + β1xi

by

count1 <- glm(y ~ x,family=poisson(link=identity))

Note that, since an identity link is not the default one for the Poisson distribution,
it is necessary to put family=poisson(link=identity) as the second argument in
this case.

Obtain the fitted model using summary. Under the null hypothesis that the linear
model describes the data, the residual deviance has an approximate χ2

7 distribution,
since there are nine observations and two parameters in the model. Does this model
provide a good fit?

(summary(count1)->SM1)

##

## Call:

## glm(formula = y ~ x, family = poisson(link = identity))

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 7.4516 0.8841 8.428 < 2e-16 ***

## x 4.9353 1.0892 4.531 5.86e-06 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for poisson family taken to be 1)

##

## Null deviance: 18.4206 on 8 degrees of freedom

## Residual deviance: 1.8947 on 7 degrees of freedom

## AIC: 40.008

##

## Number of Fisher Scoring iterations: 3

Here we compute the p-value using the residual deviance

SM1$deviance

## [1] 1.89465

SM1$df.residual
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## [1] 7

pchisq(q=SM1$deviance,df=SM1$df.residual,lower.tail = FALSE)

## [1] 0.9654403

mean(count1$residuals^2)

## [1] 2.020575

Log-Linear Model

Fit a log-linear model to the data in which µi satisfies

log(µi) = β0 + β1xi

by

count2 <- glm(y ~ x,family=poisson(link=log))

Obtain the fitted model as before. Which of the two models provides the best
description of the data?

(summary(count2)->SM2)

##

## Call:

## glm(formula = y ~ x, family = poisson(link = log))

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.8893 0.1421 13.294 < 2e-16 ***

## x 0.6698 0.1787 3.748 0.000178 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for poisson family taken to be 1)

##

## Null deviance: 18.4206 on 8 degrees of freedom

## Residual deviance: 2.9387 on 7 degrees of freedom

## AIC: 41.052

##

## Number of Fisher Scoring iterations: 4

Here we compute the p-value using the residual deviance
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SM2$deviance

## [1] 2.938747

SM2$df.residual

## [1] 7

pchisq(q=SM2$deviance,df=SM2$df.residual,lower.tail = FALSE)

## [1] 0.8906102

mean(count2$residuals^2)

## [1] 0.04983254

Here we plot the residuals against the predictor x.

plot(x,count1$residuals,col="black",ylab="Residuals")

points(x,count2$residuals,col="red")

legend(x=0.25,y=1.5,legend=c("count1","count2"),pch=1,col=c("black","red"))
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What do you conclude?

Finishing the Session

Remember to save your files and log out.
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Practical 5 - 30th October 2023 (Week 6)

This practical shows you how to assess whether a link function is appropriate and
how to check the fit of a model.

Beetle Data Revisited

In Practical 3, you fitted three models to the beetle data. Each of these was based
on a different link function. The purpose of this practical is to see which of these
link functions is best, and then to examine the fitted values of the chosen model.

Assessing a Link Function

To assess whether a logit link function might be appropriate, plot the empirical
logits

log

(
yi + 0.5

ri − yi + 0.5

)
against the doses. Note that the number 0.5 added in both numerator and denom-
inator attempts to avoid problems when yi = 0 or ri. After loading the data and
creating variables x, y, r and p as you did in the earlier lab, the plot is produced by

el <- log((y + 0.5)/(r - y + 0.5))

plot(x,el,main="Plot of Empirical Logits against x")
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and should be approximately linear.
The possibility of a probit link function can be examined by plotting the empirical

probits

Φ−1
(
yi + 0.5

ri + 1

)
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against the doses. This time, the plot is produced by

ep <- qnorm((y + 0.5)/(r + 1))

plot(x,ep,main="Plot of Empirical Probits against x")
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Is this plot similar to the first one?
Similarly, to see whether the complementary log-log link function is adequate,

plot the empirical log-log values

log
{
− log

(
ri − yi + 0.5

ri + 1

)}
against the doses. Here, the plot is produced by

ell <- log(-log((r - y + 0.5)/(r + 1)))

plot(x,ell,main="Plot of Empirical Log-Log Values against x")
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Which of the three link functions appears to work best?

Checking the Fit

Fit your chosen model and call it beetle. Obtain the fitted values with fits <-

fitted(beetle) and plot both proportions p and fitted values fits against the
doses x. Here we do this for the three candidate link functions: logit, probit and
complementary log-log.

candidates<-c("logit", "probit", "cloglog")

values<-matrix(nrow=1,p); rownames(values)<-c("observed")

par(mar=c(4,4,1,1),mfrow=c(1,3)) ## for the plots

for(link in candidates){
beetle <- glm(p ~ x,family=binomial(link=link),weights=r)

fits <- fitted(beetle);

values<-rbind(values,fits); rownames(values)[nrow(values)]<-link

plot(x,p,col="blue",main=paste("Plot of p against x ",link,sep=""),ylim=c(0,1))

lines(x,p,col="blue")

points(x,fits,col="red")

lines(x,fits,col="red")

}
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The blue points in the plot correspond to the observed proportions and the red ones
to the fitted values.

To see what we have plotted, here is a table with observed proportions p as well
as fitted values fits under the different cases of the link function.

print(round(values,4))

## 1 2 3 4 5 6 7 8

## observed 0.1017 0.2167 0.2903 0.5000 0.8254 0.8983 0.9839 1.0000

## logit 0.0586 0.1640 0.3621 0.6053 0.7952 0.9032 0.9552 0.9790

## probit 0.0569 0.1787 0.3787 0.6038 0.7875 0.9037 0.9623 0.9871

## cloglog 0.0947 0.1880 0.3380 0.5423 0.7584 0.9177 0.9857 0.9991

What are your conclusions?

Finishing the Session

Remember to log out.
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Practical 6 - 13 November 2023 (Week 8)

This practical introduces you to one of the different residuals that can be examined
for generalised linear models.

Cloth Data

The file cloth.csv on the module webpage gives the length (x), in metres, and the
number of defects (y) for 32 pieces of cloth. Since the latter variable is discrete
and its discreteness is effectively restricted to very few values when x is small, this
suggests that the mean number of defects increases with x.

The two columns of cloth.csv contain x and y in that order. Then produce a
scatterplot of the data. Is the variance constant?

cloth <- read.csv("cloth.csv")

plot(cloth$x,cloth$y, xlab="Number of defects", ylab="Length (in m)")
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The variance seems to increase as the number of defects increases.
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Fitting the Model

Fit a Poisson regression model to the data in which the mean number of defects µi

for length xi satisfies
µi = βxi.

Note that, in order to exclude the intercept, the specified model is y ~ x - 1.
Another possibility is y ~ 0 + x.

mod1 <- glm(y ~ x - 1,family=poisson(identity), data=cloth)

Obtain the fitted model using summary. What is the maximum likelihood esti-
mate of β? Does this model provide a good fit?

summary(mod1)

##

## Call:

## glm(formula = y ~ x - 1, family = poisson(identity), data = cloth)

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## x 0.0151024 0.0008962 16.85 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for poisson family taken to be 1)

##

## Null deviance: Inf on 32 degrees of freedom

## Residual deviance: 64.537 on 31 degrees of freedom

## AIC: 189.84

##

## Number of Fisher Scoring iterations: 3

The maximum likelihood estimate of β is β̂ =
∑32

i=1 yi/
∑32

i=1 xi = 0.0151.
Under the null hypothesis that the Poisson model describes the data, the residual

deviance has an approximate χ2
31 distribution, since there are 32 observations and

one parameter in the model.

qchisq(p = 0.95, df=df.residual(mod1),lower.tail = TRUE)

## [1] 44.98534

The critical region for a 95% significance level is given by the R command above.
Therefore, we reject the null hypothesis that the Poisson model fits the data well.
Alternatively, we can compute the pvalue.

pchisq(q = deviance(mod1),df=df.residual(mod1), lower.tail = FALSE)

## [1] 0.0003809611

which is below 0.05 and therefore brings us to the same conclusion.
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Checking the Fit

Obtain the fitted values using the R function fitted() and plot both the numbers
of defects and the fitted values against the lengths.

fits <- fitted(mod1)

print(fits)

## 1 2 3 4 5 6 7 8

## 8.321404 9.831641 12.565169 5.663387 10.798192 13.108854 4.092741 9.514491

## 9 10 11 12 13 14 15 16

## 7.415262 5.618080 9.741026 6.660144 13.516618 6.916884 9.695719 7.430364

## 17 18 19 20 21 22 23 24

## 8.200585 12.716193 13.667642 8.185483 7.883435 1.842489 9.922255 2.567402

## 25 26 27 28 29 30 31 32

## 11.145546 5.602978 11.100239 11.311672 7.475671 10.813294 14.377453 6.297687

plot(cloth$x,cloth$y,col="blue", xlab="Number of defects",

ylab="Length (in m)")

lines(cloth$x,fits,col="red")

legend("topleft",c("observed value","fitted values"),

col=c("blue","red"), pch=1)
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Examining the Residuals

Compute the Pearson and deviance residuals using the R function residuals(),
and compute the Anscombe residuals. Is there any reason to doubt the model
assumptions?

res1 <- residuals(mod1, type="pearson")

plot(fits,res1,col="blue", xlab="Fitted values",

ylab="Pearson residuals")
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res2 <- residuals(mod1, type="deviance")

plot(fits,res2,col="blue", xlab="Fitted values",

ylab="Deviance residuals")
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The Pearson residuals should be centered around 0, which they are in the given
plot. A large value of the Pearson residual means that the observation is making
a large contribution, which may help to identify potential outliers. The deviance
residuals have a skewed distribution and their variance is not one.

For the Poisson distribution, the Anscombe residuals are

3(y
2
3
i − µ̂

2
3
i )

2µ̂
1
6
i

.

Hence they can be computed as follows.

ansres <- 3 * (y^(2/3) - fits^(2/3))/(2 * fits^(1/6))

These are designed to transform the data to make the distribution of the residuals
as Normal as possible. It follows that we can check the distributional assumptions
by ordering the Anscombe residuals and plotting them against the expected normal
quantiles. The qqplot is obtained by the following.
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qqnorm(ansres,main="Q-Q Plot")

qqline(ansres)
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It is difficult to have a clear opinion on this qqplot. The next step could be to add
confidence intervals to the qqplot to see how many points fall outside those intervals.

Finishing the Session

Remember to log out.
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Practical 7 - 22 November 2023 (Week 9)

Rat Data

The effects of the dose of poison x, in milligrammes, and the method of delivery w
on the probability of survival were examined in a study of rats. The two methods of
delivery were as a solid with food or as a liquid in water. For each combination of
dose and method of delivery, a certain number of rats r were used and the number
who survived y is recorded.

The data are given in the file rat.csv, with four columns containing x, w, r
and y in that order. Read these data into R, compute the proportion of rats who
survived and define w as a qualitative variable or factor.

rat <- read.csv("rat.csv")

rat$p <- rat$y/rat$r

rat$w <- factor(rat$w)

Plot proportions against doses by method of delivery where black points corre-
spond to the delivery of the poison as a solid with food and the red ones as a liquid
in water. Add a legend for clarity. What are your conclusions?

plot(rat$x,rat$p,col=c("black","red")[rat$w], xlab="x",

ylab="y",pch=c(16,17)[rat$w])

legend("bottomleft",pch=c(16,17), col=c("black","red"), c("w=1","w=2"))
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The probability of survival seems to be affected by the method of delivery, with
delivery as a liquid resulting in higher survival rates.

Model 1

Fit a logistic regression model to the data in which the probability of a rat surviving
πjk at the k-th dose xk with the j-th method of delivery satisfies

log

(
πjk

1− πjk

)
= αj + βjxk.

This model allows a different intercept and slope for each method of delivery. Does
this model provide a good fit?

rat1 <- glm(p ~ w + w : x, family=binomial, weights=r, data = rat)

summary(rat1)

##
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## Call:

## glm(formula = p ~ w + w:x, family = binomial, data = rat, weights = r)

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 5.1686 0.9451 5.469 4.53e-08 ***

## w2 -0.1856 1.3180 -0.141 0.888

## w1:x -2.3704 0.4701 -5.042 4.59e-07 ***

## w2:x -1.9521 0.4171 -4.681 2.86e-06 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 74.6124 on 11 degrees of freedom

## Residual deviance: 3.7217 on 8 degrees of freedom

## AIC: 42.935

##

## Number of Fisher Scoring iterations: 4

pchisq(deviance(rat1),df = rat1$df.residual, lower.tail = FALSE)

## [1] 0.881318

Under the null hypothesis that the logistic model describes the data, the residual
deviance has an approximate χ2

8 distribution, since there are 12 combinations of dose
and method of delivery, and four parameters in the model. There is no evidence
that this model does not fit the data well as the p-value is > 0.1.

Model 2

Fit a logistic regression model to the data in which πjk satisfies

log

(
πjk

1− πjk

)
= αj + βxk

The slope is the same for the two methods of delivery. Fit the model and compare
the residual deviance with that of Model 1. Are the regression lines parallel?

rat2 <- glm(p ~ x + w,family=binomial,weights=r, data=rat)

pchisq(deviance(rat2),df = rat2$df.residual,lower.tail = FALSE)

## [1] 0.8999947

anova(rat2)

## Analysis of Deviance Table

##

## Model: binomial, link: logit
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##

## Response: p

##

## Terms added sequentially (first to last)

##

##

## Df Deviance Resid. Df Resid. Dev

## NULL 11 74.612

## x 1 66.829 10 7.783

## w 1 3.615 9 4.168

pchisq(q = 0.4465,df = 1,lower.tail = FALSE)

## [1] 0.5040018

The p-value is greater than 0.1, so there is no evidence that the regression lines
are not parallel.

Model 3

Fit a logistic regression model to the data in which πjk satisfies

log

(
πjk

1− πjk

)
= α + βxk

Both intercept and slope are the same for the two methods of delivery. Fit the
model and compare the residual deviance with that of Model 2. Is there a difference
between the methods of delivery?

rat3 <- glm(p ~ x,family=binomial,weights=r, data=rat)

anova(rat2)

## Analysis of Deviance Table

##

## Model: binomial, link: logit

##

## Response: p

##

## Terms added sequentially (first to last)

##

##

## Df Deviance Resid. Df Resid. Dev

## NULL 11 74.612

## x 1 66.829 10 7.783

## w 1 3.615 9 4.168

pchisq(q = 3.615,df = 1, lower.tail = FALSE)

## [1] 0.05726072
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The p-value is between 0.05 and 0.1, so there is weak evidence of a difference
between the two methods of delivery.

Compare your results with Examples 4.1 and 4.2 in the lecture notes, and make
sure you can reproduce it.

Finishing the Session

Remember to log out.
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Practical 8 - 27 November 2023 (Week 10)

This practical uses Poisson regression for count data.

Chronic medical conditions data

It has been observed that women who live in country areas tend to have fewer
consultations with general practitioners (family physicians) than women who live
near a wider range of health services. It is not clear whether this is because they are
healthier or because structural factors, such as shortage of doctors, higher costs of
visits and longer distances to travel, act as barriers to the use of general practitioner
(GP) services. The table below shows the numbers of chronic medical conditions
(for example, high blood pressure or arthritis) reported by samples of women living
in large country towns (town group) or in more rural areas (country group) in an
area. All the women were in the same age group, had the same socio-economic
status and had three or fewer GP visits in the past year. The question of interest
is: do women who have similar levels of use of GP services in the two groups have
the same need as indicated by their number of chronic medical conditions?

Group Numbers of chronical medical conditions

Town 0 1 1 0 2 3 0 1 1 1 1 2 0 1 3 0 1 2 1 3 3 4 1 3 2 0
Country 2 0 3 0 0 1 1 1 1 0 0 2 2 0 1 2 0 0 1 1 1 0 2

Enter the data into R defining variable y for counts and x for the categorical
variable groups. Plot the data. Is there an apparent difference between the two
groups? What type of plot is most effective for this type of data?

y <- c(0, 1, 1, 0, 2, 3, 0, 1, 1, 1, 1, 2, 0, 1, 3, 0, 1, 2, 1, 3, 3, 4,

1, 3, 2, 0, 2, 0, 3, 0, 0, 1, 1, 1, 1, 0, 0, 2, 2, 0, 1, 2, 0, 0,

1, 1, 1, 0, 2)

x <- factor(c(rep("Town",26),rep("Country",23)))

par(mar=c(4,4,1,1))

plot(x,y, ylab="Counts", xlab = "",range=0)
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A scatterplot per se is not that informative because frequencies of repeated points
cannot be seen. Look at tables of frequencies per each group:

for(i in levels(x)){ print(i); print(table(y[x==i])) }

## [1] "Country"

##

## 0 1 2 3

## 9 8 5 1

## [1] "Town"

##

## 0 1 2 3 4

## 6 10 4 5 1

Using color transparency, the scatterplot can inform about count data.

par(mar=c(4,4,1,1),mfrow=c(1,2))

plot(as.integer(x),y, ylab="Counts", xlab="",pch=16,xaxt='n',

col="black",main="No transparency")

axis(side=1, at = seq(1, 2, by = 1), labels=c("Country", "Town"))

plot(as.integer(x),y, ylab="Counts", xlab = "",pch=16,xaxt='n',

col=rgb(red=0,green=0,blue=0,alpha = 0.1),main="With transparency")

axis(side=1, at = seq(1, 2, by = 1), labels=c("Country", "Town"))
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Model fitting

The Poisson distribution provides a plausible way of modelling these data as they
are counts and within each group the sample mean and variance are approximately
equal. Compute these summary statistics per group to verify the claim.

Here are these summary statistics:
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for(i in levels(x)){ print(i); print(c(mean(y[x==i]),var(y[x==i]))) }

## [1] "Country"

## [1] 0.9130435 0.8102767

## [1] "Town"

## [1] 1.423077 1.373846

Let Yjk be the number of conditions for the k-th woman in the j-th group, where
j = 1 for the town group and j = 2 for the country group and k = 1, . . . , Kj with
K1 = 26 and K2 = 23. The Yjk are assumed to be independent random variables
Poi(αj), where the mean αj is the expected number of conditions.

The question of interest can be formulated as a test of H0 : α1 = α2 = α against
alternative H1 : α1 = α2. The model fitting approach to testing H0 is to fit two
models, one assuming H0 is true, that is Yjk ∼ Poisson(α) and the other assuming
H0 is not true, so that Yjk ∼ Poisson(αj) where j = 1 or 2.

Testing H0 against H1 involves comparing how well these two models fit the data.
If they are about equally good then there is little reason for rejecting H0. However
if the second model is clearly better, then H0 would be rejected in favor of H1.

Analyze the data using the glm function and postprocessing the output as re-
quired.

The first model is the null model.

mod_null <- glm(y~1, family=poisson); summary(mod_null)

##

## Call:

## glm(formula = y ~ 1, family = poisson)

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 0.1686 0.1313 1.284 0.199

##

## (Dispersion parameter for poisson family taken to be 1)

##

## Null deviance: 56.033 on 48 degrees of freedom

## Residual deviance: 56.033 on 48 degrees of freedom

## AIC: 138.77

##

## Number of Fisher Scoring iterations: 5

## null vs maximal

pchisq(deviance(mod_null),df = mod_null$df.residual,lower.tail = FALSE)

## [1] 0.1989482

The second model corresponds to a model with one binary variable.
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mod1 <- glm(y~x, family=poisson); summary(mod1)

##

## Call:

## glm(formula = y ~ x, family = poisson)

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -0.09097 0.21822 -0.417 0.677

## xTown 0.44379 0.27321 1.624 0.104

##

## (Dispersion parameter for poisson family taken to be 1)

##

## Null deviance: 56.033 on 48 degrees of freedom

## Residual deviance: 53.306 on 47 degrees of freedom

## AIC: 138.05

##

## Number of Fisher Scoring iterations: 5

## two means vs maximal

pchisq(deviance(mod1),df = mod1$df.residual,lower.tail = FALSE)

## [1] 0.2446323

Both models have large p-values. Looking at the difference between their de-
viances, they have a similar fit of the data. See below.

anova(mod1)

## Analysis of Deviance Table

##

## Model: poisson, link: log

##

## Response: y

##

## Terms added sequentially (first to last)

##

##

## Df Deviance Resid. Df Resid. Dev

## NULL 48 56.033

## x 1 2.7277 47 53.306

We conclude that the null model, with one parameter, is the better fit, as it is
more parsimonious and increasing the number of parameters does not improve the
fit. So, there doesn’t seem to be a significant difference in chronic conditions among
the women in the two groups.
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Extras

In your analyses, you probably used the syntax glm(y∼x,family=poisson) for fit-
ting the model with two means. Here you are going to explore in detail the model
outputs and relating these to the link function. In particular, look at the output of
the model: coefficients, fitted values and deviances for each of the following analyses
glm(y∼x,family=poisson) and glm(y∼x,family=poisson(link="identity"))

and respond to the following items for each case.

1. determine how the fitted values relate to the means per group;

2. how do the coefficients relate as well to the means per group. In your analysis
you need to consider the link used.

3. Look at the deviances between analyses: they concide. Why?

Repeat the analyses using y∼as.integer(x) instead of y∼x.
What happens when you use the syntax y∼x-1?

Finishing the Session

Remember to log out.
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Practical 9 - 4 December 2023 (Week 11)

In this practical we use log-linear models for count data in a contingency table.

Cancer Data

In a cross-sectional study of bone cancer, the type of cancer and the site were
recorded for 300 patients. The contingency table below shows the number of patients
(y) with each combination of type of cancer and site.

Site
Type Head Arms Body Legs Total
I 21 13 42 8 84
II 10 26 20 35 91
III 30 34 32 29 125

Total 61 73 94 72 300

Do the data provide any evidence that there is an association between type of cancer
and site?

Entering the Data

First enter the y values as a vector in R column by column:

c1 <- c(21,10,30)

c2 <- c(13,26,34)

c3 <- c(42,20,32)

c4 <- c(8,35,29)

y <- c(c1,c2,c3,c4)

Then generate the levels of the row and column factors by

row <- gl(n = 3,k = 1,length=12)

column <- gl(n = 4,k = 3,length=12)

Note that the first and second arguments of gl are the numbers of levels and
replications, respectively. Check that the levels have been correctly generated. The
following code chunk shows a possibility for the data captured.

cbind(y,row,column)

## y row column

## [1,] 21 1 1

## [2,] 10 2 1

## [3,] 30 3 1

## [4,] 13 1 2

## [5,] 26 2 2

## [6,] 34 3 2
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## [7,] 42 1 3

## [8,] 20 2 3

## [9,] 32 3 3

## [10,] 8 1 4

## [11,] 35 2 4

## [12,] 29 3 4

You could enter the data in a different way, e.g. by rows in the table. This will
work fine as long as the entries of y are correctly indexed by rows and columns.

Fitting the Model

Fit a log-linear model to the data by

cancer <- glm(formula=y ~ row + column,family = poisson)

This model assumes that there is no association between type of cancer and site.
Obtain the fitted model using summary. Does this model provide a good fit?

summary(cancer)

##

## Call:

## glm(formula = y ~ row + column, family = poisson)

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 2.83791 0.15800 17.961 < 2e-16 ***

## row2 0.08004 0.15130 0.529 0.59679

## row3 0.39750 0.14108 2.817 0.00484 **

## column2 0.17959 0.17347 1.035 0.30055

## column3 0.43242 0.16441 2.630 0.00854 **

## column4 0.16579 0.17402 0.953 0.34072

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for poisson family taken to be 1)

##

## Null deviance: 55.619 on 11 degrees of freedom

## Residual deviance: 38.869 on 6 degrees of freedom

## AIC: 110.33

##

## Number of Fisher Scoring iterations: 4

pchisq(deviance(cancer), df = cancer$df.residual,lower.tail = FALSE)

## [1] 7.592457e-07
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Under the null hypothesis of no association, the residual deviance has an approx-
imate χ2

6 distribution, since there are 12 combinations of type of cancer and site,
and six parameters in the model. There is very strong evidence that type of cancer
is not independent of site.

The value of Pearson’s goodness-of-fit test statistic can also be calculated by

observed <- cbind(c1,c2,c3,c4)

chisq.test(observed)

##

## Pearson's Chi-squared test

##

## data: observed

## X-squared = 37.928, df = 6, p-value = 1.16e-06

Are the values of the two statistics similar? Can you explain the difference?

Examining the Residuals

To assess the fit of the model, obtain the Pearson and deviance residuals. Which
observations are making the largest contributions to the two measures of goodness
of fit?

pearres <- resid(cancer,type="pearson")

print(pearres)

## 1 2 3 4 5 6 7

## 0.9485105 -1.9768068 0.9091220 -1.6456311 0.8195786 0.6497277 3.0563502

## 8 9 10 11 12

## -1.5943205 -1.1451408 -2.7082473 2.8159800 -0.1825742

devres <- resid(cancer,type="deviance")

print(devres)

## 1 2 3 4 5 6 7

## 0.9153133 -2.1677986 0.8836677 -1.7646091 0.7973644 0.6375587 2.8100895

## 8 9 10 11 12

## -1.6855519 -1.1830318 -3.0873707 2.5869565 -0.1836028

Compare your answers with Example 5.2 in the lecture notes, and make sure you
can reproduce the results.

Extra

Fit the model

cancer2 <- glm(formula=y ~ row * column,family = poisson)

Look at the output of summary(cancer2). Can you explain the results? Which
is the model being fitted?
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Three-dimensional contingency table

For an extra challenge, this exercise shows you how to analyse a three-dimensional
contingency table when the row totals are fixed.

Hernia Data

In a retrospective case-control study of hernias and occupations, a group of hernia
patients were matched with a group of controls who were similar with respect to age
and socio-economic class. The contingency table below shows the number of patients
(y) in each group with each combination of type of hernia and type of occupation.

Occupation
Manual Sedentary Total

Inguinal Cases 25 35 60
Controls 20 40 60

Other Cases 37 18 55
Controls 19 36 55

Do the data provide any evidence that there is an association between type of
occupation and disease status, case or control, given type of hernia?

Entering the Data

First enter the y values as a vector in R. Call it y. Then generate the levels of
the occupation, hernia and group factors. Check that the levels have been correctly
generated.

y <- c(25,20,37,19,35,40,18,36)

occ <- gl(n = 2,k = 4,length=8)

hernia <- gl(n = 2,k = 2,length=8)

group <- gl(n = 2,k = 1,length=8)

Look at the data generated:

cbind(y,occ,hernia, group)

## y occ hernia group

## [1,] 25 1 1 1

## [2,] 20 1 1 2

## [3,] 37 1 2 1

## [4,] 19 1 2 2

## [5,] 35 2 1 1

## [6,] 40 2 1 2

## [7,] 18 2 2 1

## [8,] 36 2 2 2
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Model 1

Fit a log-linear model to the data in which it is assumed that there is no association
between type of occupation and disease status given type of hernia by

retro1 <- glm(formula = y ~ occ + hernia + group + occ : hernia

+ hernia : group, family = poisson)

Note that, because the row totals are fixed, the model must always include
the terms hernia, group and hernia : group. Obtain the fitted model using
summary. Does this model provide a good fit?

summary(retro1)

##

## Call:

## glm(formula = y ~ occ + hernia + group + occ:hernia + hernia:group,

## family = poisson)

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 3.114e+00 1.748e-01 17.812 < 2e-16 ***

## occ2 5.108e-01 1.886e-01 2.709 0.00675 **

## hernia2 2.187e-01 2.398e-01 0.912 0.36179

## group2 6.277e-16 1.826e-01 0.000 1.00000

## occ2:hernia2 -5.472e-01 2.682e-01 -2.040 0.04133 *

## hernia2:group2 -1.539e-13 2.640e-01 0.000 1.00000

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for poisson family taken to be 1)

##

## Null deviance: 20.948 on 7 degrees of freedom

## Residual deviance: 12.896 on 2 degrees of freedom

## AIC: 66.139

##

## Number of Fisher Scoring iterations: 4

Under the null hypothesis that the log-linear model describes the data, the resid-
ual deviance has an approximate χ2

2 distribution, since there are eight observations
and six parameters in the model.

Model 2

Fit a log-linear model to the data which allows for an association between type of
occupation and disease status given type of hernia by
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retro2 <- glm(formula = y ~ occ + hernia + group + occ : hernia

+ occ : group + hernia : group, family = poisson)

Obtain the fitted model as before. Compare the residual deviance with that of
Model 1. Is the extent of the association between type of occupation and disease
status the same for both hernia types?

Examining the Residuals

To assess the fit of the two models, obtain the deviance residuals for the two models.
Is Model 2 an improvement over Model 1?

devres1 <- resid(retro1,type="deviance")

print(devres1)

## 1 2 3 4 5 6 7

## 0.5177121 -0.5372882 1.6201209 -1.8069061 -0.4129152 0.4038337 -1.8447916

## 8

## 1.6471518

devres2 <- resid(retro2,type="deviance")

print(devres2)

## 1 2 3 4 5 6 7

## -0.6344067 0.7848211 0.5608681 -0.7187730 0.5777352 -0.5092180 -0.7363976

## 8

## 0.5691142

Finishing the Session

Remember to log out.
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Practical 10 - 11 December 2023 (Week 12)

This practical shows you how to fit an exponential regression model to survival data.

Leukaemia Data

The survival time of patients with leukaemia (t), in weeks, was recorded. Patients
were classified into two groups (w); the white blood cell count (x), in thousands, is
a covariate. The data are given in the file leukaemia.csv on the module webpage.

The file leukaemia.csv contains columns x, w and t. Read these variables into
R calling them x, w and t and compute the logarithms of the survival times and
the white blood cell counts. Then produce a scatterplot of these data by group. Do
they provide evidence of linear relationships between the logarithms of the survival
times and the logarithms of the white blood cell counts for each group?

leukaemia <- read.csv("leukaemia.csv")

x <- leukaemia$x

t <- leukaemia$t

w <- factor(leukaemia$w)

lt <- log(t)

lx <- log(x)

par(mar=c(4,4,1,1))

plot(lx, lt, pch=19, col=c("black","red")[w])

legend("topright",c("Group 1","Group 2"),pch = 19, col=c("black","red"), cex=0.8)
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The plot shows negative correlation; it does not look as a very strong correlation
and we’ll use the GLM fits to assess it.
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Model 1

Fit an exponential regression model to the data in which the mean survival time µjk

of a patient with white blood cell count xk in the jth group satisfies

log(µjk) = αj + βj log(xk)

Note that, since a reciprocal link is the default one for the gamma distribution, it is
necessary to specify the log link in R. When looking at the results we must also set
the dispersion parameter is set to one because an exponential distribution is being
assumed for the survival times. Does this model provide a good fit?

leukaemia1 <- glm(formula=t ~ w + w : lx, family=Gamma(link=log))

summary(leukaemia1,dispersion=1)

##

## Call:

## glm(formula = t ~ w + w:lx, family = Gamma(link = log))

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 5.1499 0.5008 10.283 < 2e-16 ***

## w2 -1.8704 0.7848 -2.383 0.01716 *

## w1:lx -0.4818 0.1736 -2.775 0.00552 **

## w2:lx -0.1540 0.2027 -0.760 0.44724

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for Gamma family taken to be 1)

##

## Null deviance: 58.138 on 32 degrees of freedom

## Residual deviance: 38.555 on 29 degrees of freedom

## AIC: 301.74

##

## Number of Fisher Scoring iterations: 11

pchisq(q = deviance(leukaemia1),df = 29, lower.tail = FALSE)

## [1] 0.1104909

Under the null hypothesis that the exponential model describes the data, the
residual deviance has an approximate χ2

29 distribution, since there are 33 observa-
tions and four parameters in the model. So there is weak evidence that this model
is a good fit for the dataset.

Model 2

Fit an exponential regression model to the data in which µjk satisfies

log(µjk) = αj + β log(xk)
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Here, the slope is the same for the two groups. Obtain the fitted model as before.
Compare the residual deviance with that of Model 1. Are the lines parallel?

leukaemia2 <- glm(formula=t ~ w + lx,family=Gamma(link=log))

summary(leukaemia2, dispersion = 1)

##

## Call:

## glm(formula = t ~ w + lx, family = Gamma(link = log))

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 4.7303 0.4118 11.488 < 2e-16 ***

## w2 -1.0176 0.3492 -2.914 0.00357 **

## lx -0.3044 0.1319 -2.308 0.02097 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for Gamma family taken to be 1)

##

## Null deviance: 58.138 on 32 degrees of freedom

## Residual deviance: 40.319 on 30 degrees of freedom

## AIC: 301.49

##

## Number of Fisher Scoring iterations: 8

pchisq(q = deviance(leukaemia2)-deviance(leukaemia1),df = 1, lower.tail = FALSE)

## [1] 0.1840661

There is evidence that this model is a better fit than Model 1, and therefore that
the regression lines are parallel.

Model 3

Fit an exponential regression model to the data in which µjk satisfies

log(µjk) = α + β log(xk)

This time, both the intercept and the slope are the same for the two groups. Obtain
the fitted model as before. Compare the residual deviance with that of Model 2. Is
there a difference between the groups?

leukaemia3 <- glm(formula=t ~ lx,family=Gamma(link=log))

summary(leukaemia3, dispersion = 1)

##

## Call:

## glm(formula = t ~ lx, family = Gamma(link = log))
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##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 4.6038 0.3856 11.940 < 2e-16 ***

## lx -0.4012 0.1315 -3.051 0.00228 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for Gamma family taken to be 1)

##

## Null deviance: 58.138 on 32 degrees of freedom

## Residual deviance: 47.808 on 31 degrees of freedom

## AIC: 306.22

##

## Number of Fisher Scoring iterations: 7

pchisq(deviance(leukaemia3)-deviance(leukaemia2),df = 1, lower.tail = FALSE)

## [1] 0.006206637

This model is not better than the previous model, so the best fitting model
appears to be Model 2.

Finishing the Session

Remember to log out.
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