
MTH6115 Cryptography

Solutions 6

1 (a) 1.

(b) This rather depends on the algorithm you employ. If you use trial division,
you have to divide p by all numbers m such that 2 6 m 6 b√pc. Here

b
√

6038068681c = 77705 and b
√

9673941253c = 98356. Thus slightly fewer
than 180000 divisions (176059 in fact) would be used. Improvements like
dividing only by 2 and all odd numbers or 2, 3 and all numbers ≡ ±1 (mod 6)
reduce the 180000 to 90000 and 60000 respectively. However, we are still
doing about C

√
p arithmetic operations for some constant C, which does

not make for a polynomial time algorithm. Dividing only by primes in the
relevant ranges would involve lots of primality tests (which would make the
algorithm take longer), or the availability of a massive list of all ‘small’ primes
(not entirely helpful, though lists of primes relevant to these ranges do exist).

There are quicker primality tests, and the quickest of these is probably the
ECPP (Elliptic Curve Primality Prover), which you do not need to know
about in this course. Below I give the primality certificates for these primes.
Primes < 1000 will be presumed proved prime by trial division (by all the
primes < 32 say).

Prime Primitive Element Factors of p− 1
6038068681 17 23 · 32 · 5 · 7 · 569 · 4211

4211 6 2 · 5 · 421
9673941253 2 22 · 3 · 3209 · 251219

251219 2 2 · 11 · 19 · 601
3209 3 23 · 401

Verifying these certificates is a lot faster than doing the trial division. Finding
them however requires factorising p− 1 for various primes p, which is not so
attractive. Other primality certificates exist.

(c) Like the previous part, this rather depends on the algorithm you employ.
With trial division, one would have to divide by every number up to and in-
cluding 6038068681, about 6.04×109 operations, or say by every odd number,
which is about 3.02× 109 operations. Ouch!

1



Trial division takes about time C
√
N [arithmetic operations] to factorise N .

A faster method is Pollard Rho, which seems to take about C ′N1/4 operations
to factor N . A certain algebra package running on my machine claimed the
following times for factorising 58411921701573197293.

Algorithm CPU Time (seconds)
Trial Division 177 (estimate)
Pollard Rho 0.05

Default 0.01

Actually, the package set a limit of seemingly 230 (about 1.07×109) for what
it would allow for trial division, so I must estimate the above time. For this
example, the default algorithm did a small amount of trial division (up to
10000), a small amount of Pollard Rho, before finally succeeding with ECM
(Elliptic Curve Method). Clearly the more sophisticated algorithms use far
far fewer operations to achieve their goals than trial division, even on this
relatively small example.

[You do not need to know about the algorithms Pollard Rho and ECM in
this course, but it is good to be aware that these more complicated and faster
factorising algorithms do exist. It is a matter of active research to find (even)
quicker factorisation algorithms, or prove they do not exist, partly because
of the existence of cryptosystems like RSA.]

2 (a) Let k = log2(a) and l = log2(b) be the sizes of a and b, respectively. Then,
there is a polynomial P such that computing the product ab takes (at most)
P (n) steps, where n = k+ l is the size of the problem. (Where did k+ l come
from?) Similarly, there is a polynomial Q such that computing the sum a+ b
takes Q(n) steps.

(b) For an M -by-M matrix A denote the size of A by k; this is the sum of the
sizes of the entries of A. Similarly, denote the size of B by l. So, the total
size of the problem is n = k + l.

Computing the product AB involves M3 multiplications of integers aij and
bi′j′ , where the size of aij is less than k and the size of bi′j′ is less than l; by
the previous part, this requires M3P (n) steps. Computing AB also involves
M2(M − 1) additions of numbers of the form aijbi′j′ , each of which has size
less than k+l; this requires M2(M−1)Q(n+n) steps. So, in total, computing
AB requires M3P (n) + M2(M − 1)Q(2n) steps. This is a polynomial in n.

(c) We can prove this by induction. Suppose we have shown that computing aq

requires F (n) steps, where F (n) is a polynomial in the size n = log2(a) of
a. Then, by part (a), computing aq+1 = (aq)(a) requires P (n + qn) steps;
this is a polynomial in n. Here, I have used the fact that the size of aq is
log2(a

q) = qn.

2


