
MTH6115 Cryptography

Solutions 4

1 It is enough to find a primitive polynomial of degree 5 and look at the output
sequence of the corresponding shift register. You have seen in the previous exercise
sheet how systematically find such polynomials, but here I will do it by trial and
error: pick a polynomial that looks irreducible (!) and check whether it is primitive.
Let’s try 1 + x + x5 and take 00001 as input. The periodic part of the output
sequence is:

000010001100101011111

The period is 21, so the polynomial is not primitive; it is actually divisible by
1 + x + x2. (Does the sequence satisfy Golomb’s postulates?)

I try again with 1 + x2 + x5 and 00001:

0000100101100111110001101110101

The period is 31. So the polynomial is primitive and the sequence satisfies Golomb’s
postulates.

2 I quote the following from Dr. John Bray:

“My strings were

s1 = 1001110011010011110100001011011001011001,
s2 = 0001111011010010011011001010000101010110,

and s3 = 1000001000000001101111000001011100001111,

where s1 was me trying to write down a random sequence of 0s and 1s, and s2 was
a ‘mechanically’ produced ‘random’ sequence, produced by computer rather than
coin toss. I also calculated s3 as the bit addition of s1 and s2. This has just 16
ones and 24 zeros and looks strikingly non-random. (I chose s1 before the computer
chose s2, by the way.) The out-of-phase autocorrelations are:

72, 82, 92, 109, 1112, 126, 136 for s1,
78, 88, 910, 1011, 112 for s2,

and 34, 44, 56, 612, 72, 85, 94, 102 for s3,

where exponentiation denotes the number of times each value comes up. So s2
seems to perform a little better than s1 for postulate (G3). The 0–1 balances are
19–21 for s1 and 21–19 for s2, so neither quite satisfies (G1), but are quite close.
For true randomness we shouldn’t expect perfect balances all of the time. Here are
some probabilities. Of course, an m–n balance and an n–m balance have the same
probabilities, so for example a 22–18 balance has probability ≈ 10.312%.

1



Balance 14–26 15–25 16–24 17–23 18–22 19–21 20–20
Probability (%) 2.111 3.658 5.716 8.070 10.312 11.940 12.537

The probability that the 0–1 distribution is 13–27, 27–13 or more extreme is about
3.848%. I’ll leave you to wonder about how well, or not, (G2) is satisfied.”

3 The first 14 bits of the message are 10000111110010 (the ASCII encryption of Cr)
and the first 14 bits of the ciphertext are 00100110111001. Since we are working
over Z2, we have k = p + z (z is the ciphertext), and so the first 14 bits of the key
are:

10000111110010 + 00100110111001 = 10100001001011.

We thus get a system of equations represented by the matrix equation (with ai
unknown, over Z2)

1 0 1 0 0 0 0
0 1 0 0 0 0 1
1 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 1
0 0 1 0 0 1 0
0 1 0 0 1 0 1





a0
a1
a2
a3
a4
a5
a6


=



1
0
0
1
0
1
1


.

This system is easy to solve, and then (non-unique) solution is

(a0, a1, a2, a3, a4, a5, a6) = (y, z, y + 1, z, 1, y, z),

where y and z are arbitrary elements of Z2. Pick an arbitrary solution, say
(0, 0, 1, 0, 1, 0, 0). This corresponds to the shift register with polynomial x2+x4+x7.
We now use the first 7 bits of the key that we know, that is 1010000, as an input
for the shift register. By iterating, we generate

k = 10100001001011001111100011011101010000100101100111110001

(We stop the iteration as soon as the length of the key we are generating becomes
equal to the length of the ciphertext, that is, 56.)

We find the binary code for the plaintext as follows:

z = 00100110111001101011011011110101000100100010101000010100
k = 10100001001011001111100011011101010000100101100111110001

∴ p = z + k = 10000111110010100100111000101000010100000111001111100101.

The decimal codes for p are 67, 114, 73, 98, 66, 65, 103, 101, and so the message was
CrIbBAge (with capitals and lower case exactly like this).

[Remark. We had more than one solution for our system of equations above, of
which we picked one arbitrarily. What if we picked another solution? This would
give us another shift register. And a different shift register can generate a different
key. But can it? In fact, in our case, it can not. One can show that if two n-bit
shift registers, fed with the same binary n-tuple input, generate the same output
in the first n iterations, then they will generate the same output forever. I leave
the proof of this relatively easy result to you. One way of proving it is to use
Cayley-Hamilton’s theorem in linear algebra.]

2


