
Dr K Clough, Topics in Scientific computing, Autumn term 2023

Week 3: “Nature does not care
about our mathematical difficulties;
She integrates empirically.”*
Object oriented programming and numerical solution of ODEs

*Albert Einstein (paraphrased!)

Important announcements

1. THIS COURSE HAS CHANGED SINCE LAST YEAR

2. I will discuss coursework in more detail later, but the first will provided at the
start of week 4 and will be worth 20% - it will be similar in format to the final
one (worth the remaining 80%), just shorter, so it will provide a practice.  
IT WILL NOT BE THE SAME FORMAT OR CONTENT AS LAST YEAR!

3. There is one lecture and one tutorial per week. I strongly encourage you to
attend both in person. If you have little previous experience in coding /
python, I encourage you to come to the learning support hour, and I will
cover the material again at a slower pace.

Plan for today
1. Object oriented programming in python - class based approach rather than

functional approach

2. Revision of ordinary differential equations (ODEs)

3. How to solve ODEs numerically - explicit methods - Euler’s method,
solve_ivp() method in scipy

4. Convergence - how do you know it has worked?

5. Tutorial: Classes for shapes and predator-prey equations

Classes

Classes are a way of “packaging things up” in a very satisfying way so things that are related
are kept together in a neat way.

If your cupboards look like this, you will like classes.

Functional coding style You have probably coded in this way
up until now, and take it for granted

that this is the right way to do it

What are the values of Point
P and Point Q?

Functional coding style

Points represented as variables

Functions act on variables

You have probably coded in this way
up until now, and take it for granted

that this is the right way to do it

Object oriented programming - Classes
Here instead is a Point class.

Now the functions live within the class:

We call them methods

Now the values of the variables live
within the class:

We call them attributes

Naming:
Classes are nouns

Classes are named in CamelCase

e.g. FluffyCat, Point, Rectangle etc

Classes - how to define a class

Classes have an initialiser or
“constructor” function that sets the

key attributes

The methods can act on the attributes

(but they don’t have to, the main thing

is that they are somehow related to
how the object the class represents

behaves)

Classes - how to use a class
We make an instance of the class (we

“instantiate” it), which we refer to as an object

Note that the static method is
accessed using Point.method()

not object.method()

Think of this as “Hey, first point, go and print
yourself!”

Classes

What could the Cat class attributes and methods be?

Classes

Classes - a cat with a colour

Classes

What is wrong?

Classes

For something common to ALL cats, I would favour the first option

Classes

What is wrong?

Classes

The underscores __ mean that init is a private method
that should not be accessed outside the class.

Instead we can modify directly the attribute.

Classes

An even better
solution is to write
a modifier function
that allows you to
change the colour,
to which you can
add asserts and

other conditions to
make sure it is
sensible and

prevent user error

Classes

What is wrong?

Classes

Need to tell python how to
add cats

There is a specific syntax for
each of the arithmetic and

logical operators +, -, >, and,
or etc to allow you to

override them for your new
type (ie, your class)

Inheritance

A Lion is a Cat

Therefore we
want to inherit

the Cat
properties into
the Lion class

What is printed
here?

Inheritance

A Lion is a Cat

Therefore we
want to inherit

the Cat
properties into
the Lion class

Plan for today
1. Object oriented programming in python - class based approach rather than

functional approach

2. Revision of ordinary differential equations (ODEs)

3. How to solve ODEs numerically - explicit methods - Euler’s method,
solve_ivp() method in scipy

4. Convergence - how do you know it has worked?

5. Tutorial: Classes for shapes and predator-prey equations

Ordinary differential equations
What is:

1. The dependent
variable(s)? 

2. The independent
variable(s)? 

3. The order? 

4. The dimension?

d2x
dt2 = x2 − x − 1

dx
dt

= x2 − xy − 1 , dy
dt

= 2x + y

Ordinary differential equations

d2x
dt2 = x2 − x − 1

1. The dependent variables are

x and y 

2. The independent variable is

t (only one in an ODE)

3. The first is second order, the
second is first order (look at the

highest derivative order)

4. The dimension of the first is one
(only one dependent variable x)

and the second is dimension two
(x and y)

dx
dt

= x2 − xy − 1 , dy
dt

= 2x + y

Ordinary differential equations

How do we know:

1. If it is autonomous?

2. If it is linear?

d2x
dt2 = x2 − x − 1

dx
dt

= x2 − xy − 1 , dy
dt

= 2x + y

Ordinary differential equations
1. It is autonomous if

the functions and
coefficients do not
have a dependence
on t (except in the

derivatives)

2. It is linear if the
coefficients of x and y

and their derivatives are
constants

d2x
dt2 = x2 − x − 1

dx
dt

= x2 − xy − 1 , dy
dt

= 2x + y

Ordinary differential equations

What about this one?

d2x
dt2 + dx

dt
+ x2 + x − 1 = sin(t)

Ordinary differential equations

d2x
dt2 + dx

dt
+ x2 + x − 1 = sin(t)

Not autonomousNon linearSecond order

One dependent variable
x so dimension 1

One independent variable t
so ODE not PDE

Ordinary differential equations

What do these things tell us PHYSICALLY?

d2x
dt2 + dx

dt
+ x2 + x − 1 = sin(t)

Ordinary differential equations

d2x
dt2 + dx

dt
+ x2 + x − 1 = sin(t)

Some kind of forcing
function - the physical
scenario is changing

over time

Non linear - solutions cannot
be superposed - small

changes in the variable may
have large effects

Second order -

need 2 boundary

conditions to solve
system / know full state

Only one variable describes the system, e.g.
the x position rather than x and y position

One independent variable t
- evolution depends on

time only, not (e.g.) space
and time

Plan for today
1. Object oriented programming in python - class based approach rather than

functional approach

2. Revision of ordinary differential equations (ODEs)

3. How to solve ODEs numerically - explicit methods - Euler’s method,
solve_ivp() method in scipy

4. Convergence - how do you know it has worked?

5. Tutorial: Classes for shapes and predator-prey equations

How to solve ODEs numerically?

dx
dt

= x2 + x − 1

x(t = 0) = 1

t

x

x=1

t=1

?
 How could I estimate
the value here?

x=2

Euler’s method

dx
dt

= x2 + x − 1

x(t = 0) = 1

t

x

x=1

t=1

Δx ≈ (x2 + x − 1) Δt

x=2

Euler’s method

dx
dt

= x2 + x − 1

x(t = 0) = 1

t

x

x=1

t=1 t=2

Δx ≈ (x2 + x − 1) Δt

Euler’s method

How can I reduce the
error here?

Euler’s method

The global error is related to
the step size delta_t, so can

reduce it, or use a better
method to estimate the

gradient (more next week)

Integration with scipy 
solve_ivp()

Syntax:

solve_ivp(function_for_derivative,

independent_var_range 

dependent_var_initial_condition)

I asked for the solution
at only 5 points - this is

set by “t_eval”

Integration with scipy 
solve_ivp()

If I ask for more points things look
better.

The step size we ask for in t_eval
does NOT determine the step size

used for solving the ODE

Convergence

Usually I won’t know the solution
exactly, so how do I know what I
get is right? Should I just trust the

solver?

Since the method is first
order, decreasing the step

size by 2 SHOULD decrease
the error by 2.

If we can show this, we are
“in the convergence regime”

Convergence

Where we don’t know the
solution, we need  
3 RESOLUTIONS  

to test convergence - if we
double the resolution, we
know that the differences

should scale as

yN=8 − yN=4
yN=4 − yN=2

= 1/2

Convergence

Because

(yN=8 − ytrue) − (yN=4 − ytrue)
(yN=4 − ytrue) − (yN=2 − ytrue)

= (yN=4 − ytrue)/2 − (yN=4 − ytrue)
(yN=4 − ytrue) − 2(yN=4 − ytrue)

= 1
2

Convergence

What happens “outside the
convergence regime”?

Especially problematic for
oscillatory functions, where

we need to resolve each
wavelength in the solution

Convergence

As a minimum, need to
check that increasing
resolution does not

dramatically change the
solution

Convergence

Plan for today
1. Object oriented programming in python - class based approach rather than

functional approach

2. Revision of ordinary differential equations (ODEs)

3. How to solve ODEs numerically - explicit methods - Euler’s method,
solve_ivp() method in scipy

4. Convergence - how do you know it has worked?

5. Tutorial: Classes for shapes and predator-prey equations

This week’s tutorial - part 1

I have given you a Point
class, you need to make a

Rectangle class

This week’s tutorial - part 2

I have given you a
dimension 1 ODE, you need
to solve a dimension 2 ODE

(the predator-prey
equations)

