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Our question in this topic:
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How can we 

estimate Fₓ(t) ?



Our wish list for a complete 
understanding of statistical models

Fₓ(t) Sₓ(t) fₓ(t) µₓ
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Topic outline

1
• Non-parametric estimation

2
• Censoring

3
• Kaplan-Meier estimate

4
• Nelson-Aalen estimate
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Non-parametric estimation
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Non-parametric

A model with no parameters

So, the [observed] data does all the work and completely defines the 
model

Attractive in medical statistics if we want observed results of a 
medical trial dominate rather than mathematical assumptions

But means that the nature and quality of our data is key
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introducing non-parametric estimation
The idea here is to observe a large 
number of lives from t=0 onwards and 
use observed data to give S(t) and F(t)
◦ an empirical distribution function of T

◦ the data would give a step function 

◦ this could be smoothed
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Very simple example

We observe 1000 people and see how many are alive after t = 0, 1, 2, 
3, 4, 5 years
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Time t Number observed nt 

0 1000

1 998

2 996

3 992

4 986

5 977



Non-parametric survival model
t nt deaths hazard 1 - hazard Survival S(t)

0 – 1 1000 2 2/1000 0.998 0.998

1 – 2 998 2 2/998 0.997996 0.996

2 – 3 996 4 4/996 0.995984 0.992

3 – 4 992 6 6/992 0.993952 0.986

4 - 5 986 9 9/988 0.990872 0.977

5 977
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Practical problems with this approach
Would take > 100 years to complete a full study of human lives

We will lose track of some people
◦ this problem is called “censoring”

◦ just excluding these people will introduce bias

◦ e.g. if life assurance company collecting data we have the problem of lapsed policies

If we shorten the observation period to a small number of years and study people of ages 
simultaneously we introduce a new problem of sampling from cohorts with different distributions

Despite this, non-parametric estimation is important in medical statistics where lifetimes short

This week we will examine a non-parametric approach called the Kaplan-Meier estimator in some 
detail
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Censoring
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Censoring
This is where we do not observe the whole length of a lifetime but only an 
interval

Important concept in survival models as in practice we are nearly always relying 
on censored data

3 types of censoring to consider
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Types of censoring

• observations stop before all lives have died [the most common type]

• we do not know the precise value of these lifetimes, only that they 
exceed the right-censored limit

Right 
censoring

• we do not know the precise time a life entered the state we are observing

• e.g. medical study for some condition where patients are only examined 
every 3 months

Left 
censoring

• there is both left and right censoring

• e.g. a mortality investigation where we only given year of death

Interval 
censoring
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Censoring notation
let Ci = time at which the observation of the ith life is censored

◦ a random variable

   Ti = lifetime of that same ith life 

◦ also a random variable

then the observation is censored if Ci < Ti

◦ in this case the censoring is “random”

◦ we can also have cases of non-random or degenerately-random censoring
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non-random censoring

• censoring times {Ci} are known in 
advance

type I 
censoring

• observations continue until a pre-
determined number of deaths 
observed

type II 
censoring
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comments
In medical studies we need to be open to right-censoring – ending a medical 
trial early - dependant on the results observed
◦ unexpectedly positive results mean the treatment should be open to all

◦ unexpectedly negative results mean the treatment should be withdrawn

Censoring is “non-informative” if the set {Ci} give no information about {Ti}
◦ random censoring is non-informative

◦ we must be very careful with which statistical methods are valid with informative 
censoring

◦ watch the wording in questions
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Medical trials example (BMJ)

Lineolic acid treatment Control treatment

1*   5*   6   6   9*   10   
10   10*   12   12   12   
12   12*   13*   15*   16*   
20*   24   24*   27   32   
34*   36*   36*   44*

3*   6   6   6   6   8   8   12   
12   12*   15*   16*   18*   
18*   20   22*   24   28*   
28*   28*   30   30*   33*   
42

Initial questions:
◦ what observations would you make 

from simply looking at this data set?

◦ what would you say about the nature of 
censoring in this trial?

◦ what challenges do we need to 
overcome in survival modelling here?
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https://www.bmj.com/about-bmj/resources-
readers/publications/statistics-square-one/12-survival-analysis

Survival (in months) of 49 patients with Duke’s C 
colorectal cancer (BMJ 1987) split into 2 groups

* = censored observation

McIllmurray MB, Turkie W. Controlled trial of linoleic acid in Dukes' 
C colorectal cancer. BMJ 1987; 294 :1260, 295 :475.



Kaplan-Meier estimate
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K-M

The original 1958 paper

Kaplan E.L. & Meier P. (1958) ‘Nonparametric estimation from incomplete 
observations’ Journal of the American Statistical Association vol. 53 pp.457–481

A good example of its application today

Dudley, W.N., Wickham, R. & Coombs, N. (2016) ‘An introduction to survival 
statistics: Kaplan-Meier Analysis’ Journal of the Advanced Practitioner in 
Oncology vol.7(1) pp.91-100
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Introduction to Kaplan-Meier
a [non-parametric] method for estimating the survival function Sₓ(t) [and hence 
also the lifetime distribution Fₓ(t)] which allows for censoring
◦ in the last topic we introduced the force of mortality µₓ for a theoretical, continuous 

lifetime distribution Fₓ(t)

◦ here observed data will give us a discrete distribution from which we are trying to 
estimate Fₓ(t) and we will use the hazard λ (which is analogous to µₓ)

Kaplan-Meier makes no reference to age x, only to duration t, the time from the 
beginning of observation

observe a population of n lives

non-informative, right censoring takes place
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Setting up the Kaplan-Meier scenario
we observe m deaths at times t1, t2, …, tk

we order the times: t1 < t2 < …< tk

k ≤ m
◦ k does not necessarily equal m as we could observe more than one death at a particular 

observation point

assume dj deaths are observed at time tj (0 ≤ j ≤ k)

so   d1+ d2 +…+ dk = m

remaining n-m lives are censored with cj lives censored between times tj and tj+1

◦ we define t₀ = 0 and tk+1 = ∞ 

then c1+ c2 +…+ ck = n – m
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Kaplan-Meier assumptions
Kaplan-Meier estimation then assumes:

1. the hazard of experiencing the event [death] is zero at all times except where 
the event is actually observed in our sample

2. the hazard of experiencing the event at time tj is dj / nj where nj is the “risk 
set” or the number of lives still at risk of experiencing the event just prior to tj

3. censored lives are removed just after the event (so lives censored at tj are 
removed after those who die at tj and therefore censored lives are still in the 
risk set at tj for the hazard calculation)
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λj

λj = dj  (1 ≤ j ≤ k)

        nj

This is actually a maximum likelihood estimate given our data set
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where no death 
observed the hazard 
is 0

the hazard is constant at 
time interval where death 
is observed

‸

‸



S(t)
λj = P[ T = tj | T ≥ tj ]

◦ remembering that λ is the discreet distribution version of µₓ

then S(t) = 1 – F(t)  = ∏ (1 – λj)   and we can estimate the survival function with

      S(t) = ∏ (1 – λj)
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‸

tj ≤ t

tj ≤ t

‸ ‸

Kaplan-Meier estimator



The Kaplan-Meier estimator
The Kaplan-Meier estimator for the survival function S(t) is S(t)
◦ found by multiplying together survival probabilities in each interval up to and 

including t
◦ hence is sometimes called the “product limit estimate”

This estimator:
◦ is always specified in terms of duration t not age x
◦ is constant for durations after the last observed death
◦ is not defined for durations after the last censoring

Its main application is in medical statistics
◦ comparing lifetime distributions for 2 or more groups undergoing different 

treatments
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Medical trials example (BMJ)

Lineolic acid treatment Control treatment

1*   5*   6   6   9*   10   
10   10*   12   12   12   
12   12*   13*   15*   16*   
20*   24   24*   27   32   
34*   36*   36*   44*

3*   6   6   6   6   8   8   12   
12   12*   15*   16*   18*   
18*   20   22*   24   28*   
28*   28*   30   30*   33*   
42

Initial questions:
◦ what observations would you make 

from simply looking at this data set?

◦ what would you say about the nature of 
censoring in this trial?

◦ what challenges do we need to 
overcome in survival modelling here?
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https://www.bmj.com/about-bmj/resources-
readers/publications/statistics-square-one/12-survival-analysis

Survival (in months) of 49 patients with Duke’s C 
colorectal cancer (BMJ 1987) split into 2 groups

* = censored observation

McIllmurray MB, Turkie W. Controlled trial of linoleic acid in Dukes' 
C colorectal cancer. BMJ 1987; 294 :1260, 295 :475.



Nelson-Aalen estimate
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µs with λj
the Nelson-Aalen estimate is an alternative to Kaplan-Meier, adding to it
◦ it combines continuous parts of the distribution (which have hazard µs) and discrete parts 

(with hazard λj)

We define the “integrated hazard”  At to be

      At = ∫ µs ds  +   ∑ λ j

and the Nelson-Aalen estimator of this integrated hazard is

 At = ∑
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tj ≤ t

t

0 

tj ≤ t

dj

nj 

‸
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