Essential Foundation Mathematical Skills

Dr Argyro Mainou

October 5, 2023

Overview

(1) ILOs

(2) Introduction
(3) GCD and LCM

- Definitions
- Computation
- Properties
(4) Examples and exam-style questions

ILOs

\rightarrow Today's lecture is on GCD and LCM;
After today's lecture, you are expected to understand the concepts of Greatest Common Divisor and Least Common Multiple of two positive integer numbers.

Introduction

History: GCD and LCM (Greatest Common Divisor and Least Common Multiple).

- The legendary Greek Mathematician Euclid suggested an algorithm for finding the greatest common divisor of two integers, which was later named the Euclidean algorithm.
- This algorithm, as well as computationally refined versions, are in widespread use today.

Figure 1: Euclid (ca. 325-270 BC).

GCD and LCM

Definition (Greatest Common Divisor)
Greatest Common Divisor (GCD) or Highest Common Factor (HCF) of two positive integers is the largest positive integer that divides both numbers without remainder.

Examples:
$\operatorname{gcd}(2,4)=2$
$\operatorname{gcd}(4,6)=2$
$\operatorname{gcd}(0,5)=5$
Definition (Relatively prime)
Two integers a and b are called relatively prime if $\operatorname{gcd}(a, b)=1$.

Definition (Least Common Multiple)
Least Common Multiple (LCM) of two integers is the smallest integer that is a multiple of both numbers.

GCD and LCM

Given two non-negative integers a and b, we can calculate $\operatorname{gcd}(a, b)$ and $\operatorname{Icm}(a, b)$ as follows:
(1) Perform prime factorization to both integers.
(2) Write down all the exponents and then insert any missing prime, raised to the power of 0 .
(3) The GCD and LCM are the products of all primes involved in the prime factorization, each raised to the smallest and the largest of the two exponents, respectively.

For example, let $a=270$ and $b=252$.
Then:
(1) $a=2 \cdot 3^{3} \cdot 5$
$b=2^{2} \cdot 3^{2} \cdot 7$
(2) $a=2^{1} \cdot 3^{3} \cdot 5^{1} \cdot 7^{0}$
$b=2^{2} \cdot 3^{2} \cdot 5^{0} \cdot 7^{1}$
(0) $\operatorname{gcd}(a, b)=2^{1} \cdot 3^{2} \cdot 5^{0} \cdot 7^{0}=2 \cdot 9 \cdot 1 \cdot 1=18$.
$\mathrm{Icm}(a, b)=2^{2} \cdot 3^{3} \cdot 5^{1} \cdot 7^{1}=4 \cdot 27 \cdot 5 \cdot 7=3780$.
\rightarrow Note that for integers
a and b, we have:
$\operatorname{gcd}(a, b)=\frac{a \cdot b}{\operatorname{lcm}(a, b)}$
or, equivalently,
$\operatorname{Icm}(a, b)=\frac{a \cdot b}{\operatorname{gcd}(a, b)}$.

GCD and LCM

Important properties:

- If a divides b, then $\operatorname{gcd}(a, b)=a$ and $\operatorname{Icm}(a, b)=b$.

For example, 3 divides 21 and we have: $\operatorname{gcd}(3,21)=3, \operatorname{lcm}(3,21)=21$.

- The least common multiple of two relatively prime integers is equal to their product.
\rightarrow In other words:
If $\operatorname{gcd}(a, b)=1$, then $\operatorname{Icm}(a, b)=a \cdot b$.
- Two distinct primes are necessarily relatively prime, but two integers can be relatively prime without any of them being prime.
\rightarrow In other words:
a, b are prime $\Longrightarrow a, b$ are relatively prime.
a, b are relatively prime $\nRightarrow a, b$ are prime.
For example, $\operatorname{gcd}(4,9)=1$, but neither 4 or 9 are primes.

Examples and exam-style questions

Question: If $\operatorname{gcd}(x, 12)=6$ and $\operatorname{Icm}(x, 12)=180$, then what is the value of x ?
Question: If $\operatorname{gcd}(90, x)=6$ and $\operatorname{Icm}(90, x)=180$, then what is the value of x ?
Question: Calculate the GCD and LCM of the following pairs of larger numbers: $(48,60),(72,90),(81,108),(54,135),(112,168),(104,156)$.

Challenge: Calculate the GCD and LCM of 40, 168 and 196.
Question: Compute the GCD of the following pairs of integers: $\left(9^{9}, 141^{2}\right),\left(66,18^{5}\right),\left(26^{4}, 2600\right)$.

Question: Compute the GCD and LCM of the following pairs of integers: $(48,50),(56,44),(236,168)$.

Examples and exam-style questions

HCF AND LCM
 EXAM-TYPE QUESTIONS

NO CALCULATOR
$\left.\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { A1 } \\ \text { Express } 204 \text { as a product of its } \\ \text { prime factors. } \\ \text { Show your working clearly. }\end{array} & \begin{array}{l}\text { A2 } \\ \text { Write } 792 \text { as a product of its prime } \\ \text { factors. } \\ \text { Show your working clearly. }\end{array} & \begin{array}{l}\text { A3 } \\ 1400=2^{\prime} \times 5^{2} \times 7 \\ \text { Find the value of } p .\end{array} & \begin{array}{l}\text { A4 } \\ \text { Given that } 120=2^{1} \times 3 \times 5\end{array} \\ \text { And that } n=120 \times 108 \\ \text { Write } n \text { as a product of powers of its } \\ \text { prime factors, }\end{array}\right\}$

