Week 2: Start as you mean to go
on!

Software engineering for scientific com

Important announcements

1. THIS COURSE HAS CHANGED SINCE LAST YEAR

2. | will discuss coursework in more detall later, but the first will provided at the
start of week 4 and will be worth 20% - it will be similar in format to the final

one (worth the remaining 80%), just shorter, so it will provide a practice.
IT WILL NOT BE THE SAME FORMAT OR CONTENT AS LAST YEAR!

3. There is one lecture and one tutorial per week. | strongly encourage you to
attend both in person.

Teaching approach

1. It is proven that you will learn more with an interactive approach

2. You may need to talk to each other, and me... sorry (not sorry)!

3. This is a safe space, it is ok to be wrong or to ask “newbie” questions

4. | will focus on the basics, so that you understand in principle what the
point is. Almost always, In practical research, the methods will be

more complex, but the basic concepts should give you the right
starting point to understand them, and the possible problems

5. You are responsible for your own learning, and you know what format
works best for you

6. However, 99 out of 100 the best way to learn in this subject is to do,
not to listen or read

What do you think is the most important thing
when writing a scientific / mathematical code?

1. Having it run very fast

Well tested, getting the right answer

Prioritise these In

. Readability / understandability of the code .
order of importance

. Reproducibility of the results

SRR

Using the most advanced code tools available

What do you think is the most important thing
when writing a scientific / mathematical code?

1. Having It run very fast Not worth optimising for 2x speed up, for 10x maybe
. Well tested, getting the right answer wellyes... as a minimum
. Readability / understandability of the code After 10 years of code work I think this is number 1!

: ReprOdUClblllty of the results UK research councils require this

o A W N

Using the most advanced code tools available Not really bothered about this!

// Now we need to fix the algebraic constraints
const DisjointBoxLayout& level_domain = m_state_new.disjointBoxLayout();
Datalterator dit@® = level _domain.datalteratar();

m
int nbox = dit@.size();
#pragma omp parallel for default(shared) schedule(dynamic)

for(int ibox = ©0; ibox < nbox; ++ibox) {
DataIndex di = dit@[ibox];
const Bax& b = level _domain[di];
FArrayBox& state_fab = m_state_newl[di];

FORT_FIXBSSNCONSTRF (CHF_FRAn(state_fab,c_h,s _num_comps_h),

CHF_FRAn(state_fab,c _A,s num _comps_A),
CHF_CONST_REAL(m_dx),

CHF_CONST_REAL (m_time),
CHF_CONST_REAL (m_p.center[0Q]),
CHF_CONST_REAL (m_p.center[1]),
CHF_CONST_REAL (m_p.center[2]),
CHF _B0X(b));

// And enforce non zero chi and non negative alpha condition
// And check for nan and Inf if onoffparam2 is on

BoxIterator bit (b);
for (bit.begin (); bit.ok (); ++bit)
{

IntVect iv = bit ();

PhD
supervisor

if (m_p.onoffparam2 == 1) {

@;

bool nanerror

for (int comp = @; comp < m_state_new.nComp (); ++comp)

{

Real val = state_fab (iv,comp);

if (isnan(val) || isinf(val) || Abs(val)>1.e40)

Oct 2013: ' { _

pout() << ™ r = " << sqrt(pow((m_dx*iv[B]-m_p.center[@]),2)
. ((m_dxxiv[1]-m_p.center[1]),2)
There is now a Level Zero + pow((n_dxxiv[2]-n_p.center[2]).2))
<< " time = " << m_time
<< " comp = " << s5_state_names[comp]
<< " val = " << val << std::endl;
Started my PhD with an unreadable,

non working code }

My own experience

T | B

=
|
gjj Home Research Pecple FPublications Movies Contact Q @

Meet the Team

Developers and Users

Tamas LlIibert Areste Josu Jamie Bamber Katy Clough
Andrade Salo Aurrekoetxea University of Oxford Cueen Many
University of Qucen Mary University of Oxforc University of Londen

Barcelona Unversity of London

Robin Croft Eloy de Jong Amelia Drew Matt Elley Tamara
University of King's College University of King's College '—VStafyeva
Cambridge Lencon Cambridqge ondonr

University of

Now a large team of developers:
Sharing code makes us all more productive, but
relies on it being readable and well tested

£

¢)
Pau Figueras Tiago Franga Bo-Xuan Ge Chenxia Cu Thomas Helfer
Queen Mary University of Queen Mary University af King's College | ondan GQueen Mary University of Johns Fopkins University

)\
)

Cristian Joana Liina Jukko Kacper Kornet Eugene Lim James Marsden
University of Louvain King's College London University of Cambridge King's College London L niversity of Oxfore

Francesce Muia Zainab Nazari Miren Radia Justin Ripley Dina Traykova
Jniversily of Cambridga Bogasici Univarsily end Universily of Carmbrioge Universiy of Cambridge Max Planck Instilule
CTF

Zipeng Wang Kaze Wong

Johns Hop<Ins University Johns Hop«<ins University

My own experience

ume = 151040 M

20

Simulation of energy
density of dark matter
around a moving black

hole

Plan for today

1. Good grammar for good code - types, variables, assignment, functions,
loops, conditionals.

2. Python libraries - NumPy, SciPy and Matplotlib as examples

3. Good coding practise - version control, defensive programming, comments

4. First tutorial - space: the final frontier...

This works

Types

In [5]: a =1
b = 2
. : : : : : = a/b
Main simple types are int (signed integer), float grini‘(c)
(sighed decimal number) bool (boolean - true or
false), or str (sequences of characters) 9.5
» Python assigns the type automatically, which is This Is better
*usually™ helpful
In [6]: a= 1.0
b = 2.0
* A type contains information for the computer c = a/b
about how operations work on that type, for print{c)
example, what should the + operator does will e

differ with integers versus strings. Unless you really meant

® (We can also have user defined types called
classes that we will discuss later)

In [11]:

S T N T O

Variables

- use lower case for variable names, with underscores between words

- usually they should be NOUNS:

number of cats = 3
weight_of cat kg = 4.5 What are the types here?

name_of _cat = '"Fluffy'
- exception for bools which should be named like they are asking a question

1s a_cat = True
eats fish False
1s_fluffy = True

Assignment

Assignment of one variable to another in python
IS a label not a copy

(unlike many other code languages e.g. C++) a = [1,2,3,4]

b = a

b[0] = 100
print(a)
print(b is a)
print(b == a)

2
a

a
b

What is printed here?

-
b

Assignment

Assignment of one variable to another in python

IS a label not a copy

(unlike many other code languages e.g. C++)

pe
b

a
b

2
a

a = [1,2,3,4]
b = a

b[0] = 100
print(a)
print(b 1is a)
print(b == a)

(100, 2, 3, 4]
True
True

Assignment

a = 2
But sometimes python tries to be “clever”, and b =a
. . . print(b 1s a)
decides that you really meant to reassign the variable, h = 3
not amend the original one. orint(a)

S | - print(b is a)
The place this will come into play most is with arrays,

In particular numpy arrays that we will see later. Just True
be aware of it as a source of bugs and always |2: .
experiment with a trivial example if unsure, alse
e.g.

a = [1,2,3,4] a=1[1,2,3,4]

b = [5,6,7,8] b = [5,6,7,8]

bl:] = a b = a : |

ool = 100 (8] = 100 Spot the difference here!

print(a) print(a)

[1, 2, 3, 4] [100, 2, 3, 4]

- def calculate_mass(density, volume) :
FunCtlonS mass = density x volumé

return mass

Must indent the body of the function

def is_greater_than_five(x) :

S return (x > 5)
Needs a colon after the definition

Takes in inputs - may also leave them empty but always need the brackets ()

Returns an output - if none is given the return is void (the value ‘None’ is
returned) - my suggestion is to always return a value to confirm success

Variables declared in the body (e.g. ‘'sum’ above) are local - they cannot be
accessed outside the function, e.g. ‘mass’ above

Functions do things so they are named as VERBS unless they return a bool
IN which case they are named in the same way as the boolean variables. Use
lower case letters and underscores to separate words as with variables

In [11]: def add_two _numbers(first number, second_number) :

FunCtionS sum = first _number + second number

return sum

def fll(a,b) :
return a+b

Q: Why is the first function better than the second one?

In [11]: def add_two_numbers(first_number,second_number) :
sum = first _number + second number

Functions

def fll(a,b) :
return a+b

Q: Why is the first function better than the second one?

- It has a name that Is a verb, in lower case with underscores
- The name is descriptive and the purpose of the function is immediately clear
- The purpose of the inputs and the return value is also clear

- NEVER NEVER use things like a, b, tmp or foo for variable names, you are just
hurting someone in the future (probably yourself, or me)

In [11]: def add _two numbers(first number, second_number) :

- sum = first _number + second number
Functions

def fll(a,b) :
return a+b

Q: Why might | use a function?

In [11]: def add_two_numbers(first_number,second_number) :
sum = first number + second number

Functions

def fll(a,b) :
return a+b

Q: Why might | use a function?

- Makes code more modular
- Therefore more readable

- Therefore easier to debug

- Avoids repetition of code, which again reduces error and makes updating

easier (imagine we find a way to speed up a function, we only need to adjust
it in one place)

Loops - for

- naming should make iteration clear

- ‘I’ Is often used as an index, but |
prefer to add ‘I’ to the front of the
iterator object

- Very often we will be iterating
through arrays in which case we can
directly iterate, but often having the
index is useful

- Can add a “break” to exit for a
given condition - useful for error
handling.

cheeses = ['edam',

1 =1

'brie', 'cheddar']

for cheese in cheeses :

print('"Cheese number ",

1 =1+ 1

Cheese number
Cheese number
Cheese number

1 1is
2 1S
3 1is

edam
brie
cheddar

1,

1S

, Cheese)

Loops - for

- naming should make iteration clear

- ‘I’ Is often used as an index, but |
prefer to add ‘I’ to the front of the
iterator object

- Very often we will be iterating
through arrays in which case we can
directly iterate, but often having the
index is useful

- Can add a “break” to exit for a
given condition - useful for error
handling.

cheeses = ['edam',

1 =1

'brie', 'cheddar']

for cheese in cheeses :

print('"'Cheese number ", i,

1 =1+ 1

Cheese number
Cheese number
Cheese number

1S

1 is edam
2 1s brie
3 1s cheddar

cheeses = ['edam',

for icheese, cheese in enumerate(cheeses) :

'brie', 'cheddar']

print("Cheese number ", icheese+1, "is

Cheese number
Cheese number
Cheese number

1 1s
2 1S
3 1is

edam
brie
cheddar

, Cheese)

", cheese)

cheeses = ['edam', 'brie', 'cheddar']

LOOpS - fOr 1%0; <1:heese in cheeses :

print('"'Cheese number ", i,
1=1+1

is ", cheese)

- naming should make iteration clear Cheese number 1 1s edam
Cheese number 2 1s brie

e _ Cheese number 3 is cheddar
- ‘I’ Is often used as an index, but |

prefer tO add ‘i, tO the frOnt Of the cheeses = ['edam" 'brie' , 'Cheddar']

iteratOr ObjeCt for icheese, cheese in enumerate(cheeses) :
print("Cheese number ", icheese+1l, "is ", cheese)

- Very often we will be iterating creese numer 12 cdan

through arrays in which case we can Cheese number 3 is cheddar

directly iterate, but often having the : s b g

: : cheeses = ['edam', 'brie', 'cheddar'

mdex IS USGfUl for i, cheese in enumerate(cheeses) :
print("Cheese numper ", i+1, "is ", cheese)

- Can add a “break” to exit for a O ne("T don't Uke brie!")

given condition - useful for error break

handling_ Cheese number 1 is edam

Cheese number 2 1s brie
I don't like brie!

Loops - while

- | rarely use while, since you can usually reframe it as a for loop with a break.

- However, where it better matches the purpose of the loop, it can make the code
more readable

number_of cats = 0
while (number of cats < 3)
number of cats += 1
print("Adding another cat, now have ", number_of cats)

Adding another cat, now have 1
Adding another cat, now have 2
Adding another cat, now have 3

Loops

Q: What is my_number at the end of these loops?

my_number = 0
my numbers = [1,2,3]

for inum, number in enumerate(my_numbers) :

my_number += inum
my_number *= number

print(my_number)

while my_number < 20 :
my_number += 1

print(my_number)

Loops

Q: What is my_number at the end of these loops?

my_number = 0
my_numbers = [1,2,3]

for inum, number in enumerate(my_numbers) :

my_number += 1num
my_number *= number

print(my_number)

while my_number < 20 :
my_number += 1

print(my_number)

12
20

Conditionals - if, elif, else

* Always cover all the options

 Any nonzero number is interpreted as Irue, but avoid this and try to always
define properly as a bool

 Boolean operators are ‘and’ ‘or’ or ‘not’

» Often used for error checking is_a_cat = True
is_fluffy = False

if (is_a_cat == False) :
print("It is not a cat")
elif(is_a_cat and is_fluffy) :
print("It is a fluffy cat")
else :
print("Something is wrong! Cats are always fluffy!")

Something 1s wrong! Cats are always fluffy!

Conditionals

Q: What is going wrong here?

my_float

= 1.0el6
your_float =

my_float - le-6

if(my_float == your_float)

print("We both have the same number")
else :

print("The numbers are different")

We both have the same number

Conditionals

Usually with floats you want to do something like this:

my_float

= 1.0
your_float =

my_float + 1.0e-6

tolerance = 1.0e-3
if (abs(my_float - your_float) < tolerance) :
print("We both have (roughly) the same number")
else :
print("Our numbers are different")

We both have (roughly) the same number

Naming quiz: Which of the following would
(usually) be an acceptable name?

1. A bool called fluffy_cat

2. A float called size_of_cat

3. A bool called is_not_hungry

4. A function called my_cat()

5. An integer called my_float_value

6. A function called integrate_area()

Naming quiz: Which of the following would
(usually) be an acceptable name?

1. A bool called fluffy_cat Better called is_fluffy_cat

2. A float called size_of_cat Good! Better if unit added!

3. A bool called is_not_hungry In principle ok, but double negatives confusing
4. A function called my_cat() Should be a verb! What is the function doing?

5. An integer called my_float_value Why is an integer called float?

6. A function called integrate_area() Looks good!

Plan for today

1_ OO0 OiarHHc oT— GO 0C o I ACIRISI DL “Im oT1S;, TO0OC
2. Python libraries - NumPy, SciPy and Matplotlib as examples
3. Good coding practise - version control, defensive programming, comments

4. First tutorial - space: the final frontier...

NumPy = numerical python

* Provides an object called an ndarray
and routines for acting on them:
mathematical, logical, shape : t
manipulation, sorting, selecting, 1/0, ;mzo':p gt:n'][a);(a[li 2p3 41)
discrete Fourier transforms, basic linear h = np. array([2 ’ 4' 6' 371)
algebra, basic statistical operations, ' e

random simulation and much more. print(a*b)

* Similar to the built in type ‘list’ but [2 8 18 32]

allows more rapid operations due to
the use of precompiled C functions
behind the scenes.

NumPy = numerical python

v

import numpy as np
print(np.sin(np.pi/2.0))

1.0

from numpy import x
print(sin(pi/2.0))

1.0

x Q: Why is this dangerous?

NumPy = numerical python

Note the dot allows us to access
functions and objects within NumPy
(more detail when we learn classes)

import numpy as np
print(np.sin(np.pi/2.0))

1.0

Potential for function overlap -

from numpy import x x numpy contains a HUGE number

print(sin(pi/2.0))
1.0

of functions and objects
if you define a function called sin()
how will in know which to use?

import numpy as np

NumPy = numerical python erint(p.sintnp.pis2.0))

1.0

np.sin(x)

Functions and Ngmpy
objects in my functions and

local code objects

Go and get the function from NumPy and apply it to x - crossing a barrier

from numpy import *

NumPy = numerical python i :(sin(pi/2.0))

1.0

Functions and
objects In my
local code

Numpy

functions and

objects
sin(x) |

NumPy functions exist in the current scope, no barrier to access!

MatPlotLib - library for plotting and

visualisation

* Again conventional to import using
an alias, now ‘plt’

* Naturally makes plots nice

SO many examples available via their
website https://matplotlib.org or
google...

* Best to just learn as you go from
existing examples

import numpy as np
a = np.array([1,2,3,4])
b = np.array([2, 4,6,8])

import matplotlib.pyplot as plt
plt.plot(a,b, '—-'")
plt.plot(a,b, 'o')|

R 4

7

64

10 15 20 25 30

3.5

40

https://matplotlib.org

SciPy = Scientific Python

o ' from scipy import misc
Advanced extensions to NumPy import maiplotlib.pyslot as plt
o Library of numerical algorithms and Bl
_ .) _ plt.imshow(face)
domain-specific toolboxes, including plt. show()
sighal processing, optimization, 0p

statistics, and much more 100 CAR
« Typical to import whole submodules U
from scipy and then index into them

using the dot

300 §
400
500
e00

Just remember to have fun, make mistakes, and persevere. ana

0 200 400 600 800 1000

SciPy = Scientific Python

import
X = np.
y = np.
Xnew =
ynew =
import

plt.plot(xnew, ynew,

numpy as np

linspace(@, 10, num=11)
cos(-xxx2 / 9.0)
np.linspace(@, 10, num=1001)
np.interp(xnew, x, V)
matplotlib.pyplot as plt

plt.plot(x, v,
plt.legend(loc="best');

'—', label='linear interp')

'o', label='data')

100 -

0.75 -

0.50 -

0.25 -

0.00 -

-0.25 -

-0.50 -

-0.75 -

-1.00 -

—————————

\

N\

- |Inear interp

L —

data

10

Q: Why might you need this?

Plan for today

1. Good-grammartorgood-code—lypes—varablestunctionsloofr
2. Python libraries - numpy 1y and matplotlib as example

3. Good coding practise - version control, defensive programming, comments

4. First tutorial - space: the final frontier...

3 points for good code practise

1. Use version control, and use it frequently
2. Defensive programming

3. Commenting (but not too much)

Git - a form of version control

L[]

Showing 9 changed files with 7,929 additions and 176 deletions.

v [examples

WV

) BHEvolution.ipynb
| OscillatonEvolution.ipynb
B source

I]

| bhinitialconditions.py

'Y hamdiagnostic.py
7 oscillatoninitialconditions.py
1 rhsevolution.py

] tensoralgebra.py

W tests

[BHTest.ipynb

'Y GRGeometryTests.ipynb

source/rhsevolution.py [

/ f $, ' . b 2 ¢ ’ , e~ |
,¢ (UK geT get 1IS(1 , current_state ¢, N_T, 1 S)garithmic, eta, progress_ba

enforce that the determinant of \bar gamma 13 1s equal to that of flat space in spherical coords

(note that trace of \bar A_i1j = 8 1s enforced dynamically below as in Etienne

h_tensor = np.array([hrr, htt, hppl)

determinant = abs(get_rescaled_determinant_gamma(h_tensor))
h = np.array([hrr, htt, hppl)
determinant = abs(get_rescaled_determinant_gamma(h))

hrr (1.6 + hrr)/ np.power(determinant,l1./3) - 1.0
htt (1.9 + htt)/ np.power{(determinant,1./3) - 1.0

rhs_u, rhs_v, rhs_phi, rhs_hrr, rhs_htt, rhs_hpp, rhs_K, rhs_arr, rhs_att, rhs_app, rhs_lambdar,

rhs_shiftr, rhs_br, rhs_lapse = np.array_split(rhs, NUM_VARS)

Unified

e L e e e e e L R A S e

now calculate the rhs values for the main grid (boundaries handled below)
h = np.array([hrr, htt, hppl)

a = np.array(larr, att, appl)

em4phi = np.exp(—4.6%phi)

dhdr = np.array([dhrrdx, dhttdx, dhppdx])

Git - a form of version control

Q: Why use version control?

156 contributions in the last year

Oct Nov Dec Jan

Mon

Wed

Buried deep in the ice is the GitHub
code vault — humanity's safeguard
against devastation D eorcrons:

ABC News Breakfast / By Nate Byrne Activity overview

Posted Wed 12 Aug 2020 at 10:13pm, updated Fri 14 Aug 2020 at 5:36am .
o P P g | Contributed to

and 9 other repositories

Git - a form of version control

Q: Why use version control?

So many reasons!

» Stores code so it is not lost

* Able to revert to previous versions when broken

* Able to spot bugs by checking all commits

* Collaboration made easier if several people developing code
 Easy to add documentation and code update management tools
 Can also store data and output files

 Knowledge of coding and experience proven for future employers

* Immortality of your code

Git - a form of version control

* Process for each week tutorial (see the wiki page https://github.com/KACIlough/
TopicsIinSciComp/wiki/Updating-your-git-repository)

1. Make a Pull Request from my repository into your fork to get the updates
2. Create a branch called e.g. tutorial/week2, and check it out

3. Make your changes, add and commit them

4. Push your changes to the branch - at least dalily

5. Repeat until exercises complete, check them against solutions

6. Merge them with your main branch using a pull request

https://github.com/KAClough/TopicsInSciComp/wiki/Updating-your-git-repository
https://github.com/KAClough/TopicsInSciComp/wiki/Updating-your-git-repository
https://github.com/KAClough/TopicsInSciComp/wiki/Updating-your-git-repository

Defensive programming

You will make mistakes.
Often really silly ones!
And you won’t see them.

This Is ok! Just be prepared
for it!

If vou don’t make mistakes,
you aren’t really trying.

COLEMAN HAWKINS

www.amazingmarketer.in
#AmazingMarketer

Defensive programming - assertions

numbers = [1, =1, 2, 3]

Goal is to write code that checks (2 & numers:
assert num > 0.0, 'Data should only contain positive values'

itself. Therefore we use fetal e
assertions (better than the

AssertionError Traceback (most recent call last)

Conditional Statements /var/folders/p9/hydj_8nx5w3c8rkwjmgvty5r0000gp/T/ipykernel_96023/65554243.py in
] 2 total =
3 for num in numbers:
Seen preVIOUSIy)' ————— 4 assert num > , 'Data should only contain positive values’
5 total += num
6 print('total is:', total)
- Fall early, fall Often - AssertionError: Data should only contain positive values

check regularly, and in the
place closest to where the object Is initialised

- If you find a bug, always add an assertion or test to avoid it happening again

- Assertions also help readers of the code to check their understanding of it

Defensive programming - test driven
development

1. Write a function 1. Write a set of test
functions
2. Call it interactively on
two or three different 2. Write a function that
iINnputs should pass those
tests
3. If it produces the
wrong answer, fix the 3. If it produces the
function and re-run wrong answer, fix the
that input function and re-run the

test functions

Which process is better?

Defensive programming - test driven
development

If people write tests after writing the thing to be tested,
they are subject to confirmation bias, i.e., they
subconsciously write tests to show that their code is
correct, rather than to find errors

Writing tests helps you to figure out what the function is
actually supposed to do

Defensive programming - timing

Timing functions is a really

import time
good way to find ’

bottlenecks. start = time.time()
print("hello")

In simple codes long end = time.time()

execution times often mean time in seconds = end - start

you are doing something print(time_in_seconds)

wrong. hello

0.000/958412170410156

Commenting

#Function that calculates the mass given the density and volume
def calculate_mass(density, volume)

mass = density * volume

return mass

Assigns the value of 3 to a
a =3

Uses Equation (3.2) 1n Clough et. al. 2022 Phys.Rev.Lett. 129 (2022)
g_tt =E + 0.5 % V_of_phi

Q: Which of these comments are useful?

Commenting

#Function that calculates the mass given the density and volume
def calculate_mass(density, volume)

mass = density * volume

return mass

Assigns the value of 3 to a
a =3

Uses Equation (3.2) 1in Clough et. al. 2022 Phys.Rev.Lett. 129 (2022)
g_tt =E + 0.5 % V_of_phi

Only the last one - the others are redundant and
can be seen by reading the code (assuming you know Python)

In tech Iindustry the modern paradigm is to reduce comments to an absolute minimum by
writing longer and more descriptive variable/function names

In scientific coding a few overly detailed comments doesn’t hurt, especially explaining a non
trivial function or Python method to a fellow student and non code expert

Summary

1. Good grammar creates good code!
2. Python libraries contain useful functions and objects that we will use

3. Good coding practise includes using version control, doing defensive
programming, and commenting (but not too much or redundantly)

Tutorial problem this week:

Space the final frontier! See the Week 2 notebook at https://github.com/
KACIlough/TopicsinSciComp/tree/main/Notebooks

yp

I | I |
i w N — o = N (] B
— () = N w A
| |

y position

% ¢ %

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
time / X position

el

=3

]

time / X position

These are not necessarily the optimum solutions!

https://github.com/KAClough/TopicsInSciComp/tree/main/Notebooks
https://github.com/KAClough/TopicsInSciComp/tree/main/Notebooks
https://github.com/KAClough/TopicsInSciComp/tree/main/Notebooks
https://github.com/KAClough/TopicsInSciComp/tree/main/Notebooks

