
Dr K Clough, Topics in Scientific computing, Autumn term 2023

Week 2: Start as you mean to go 
on!
Software engineering for scientific computing



Important announcements

1. THIS COURSE HAS CHANGED SINCE LAST YEAR


2. I will discuss coursework in more detail later, but the first will provided at the 
start of week 4 and will be worth 20% - it will be similar in format to the final 
one (worth the remaining 80%), just shorter, so it will provide a practice.  
IT WILL NOT BE THE SAME FORMAT OR CONTENT AS LAST YEAR!


3. There is one lecture and one tutorial per week. I strongly encourage you to 
attend both in person.



Teaching approach
1. It is proven that you will learn more with an interactive approach


2. You may need to talk to each other, and me… sorry (not sorry)!


3. This is a safe space, it is ok to be wrong or to ask “newbie” questions


4. I will focus on the basics, so that you understand in principle what the 
point is. Almost always, in practical research, the methods will be 
more complex, but the basic concepts should give you the right 
starting point to understand them, and the possible problems


5. You are responsible for your own learning, and you know what format 
works best for you


6. However, 99 out of 100 the best way to learn in this subject is to do, 
not to listen or read



What do you think is the most important thing 
when writing a scientific / mathematical code?
1. Having it run very fast 


2. Well tested, getting the right answer


3. Readability / understandability of the code


4. Reproducibility of the results


5. Using the most advanced code tools available

Prioritise these in 
order of importance 



What do you think is the most important thing 
when writing a scientific / mathematical code?
1. Having it run very fast 


2. Well tested, getting the right answer


3. Readability / understandability of the code


4. Reproducibility of the results


5. Using the most advanced code tools available

Not worth optimising for 2x speed up, for 10x maybe

Well yes… as a minimum

After 10 years of code work I think this is number 1!

UK research councils require this

Not really bothered about this!



My own experience

My CodeMe

PhD 
supervisor

Oct 2013:  
There is now a Level Zero

Started my PhD with an unreadable,  
non working code



My own experience

Now a large team of developers: 
Sharing code makes us all more productive, but


relies on it being readable and well tested



My own experience

Simulation of energy 
density of dark matter 
around a moving black 

hole



Plan for today
1. Good grammar for good code - types, variables, assignment, functions, 

loops, conditionals.


2. Python libraries - NumPy, SciPy and Matplotlib as examples


3. Good coding practise - version control, defensive programming, comments


4. First tutorial - space: the final frontier…



Types
• Main simple types are int (signed integer), float 

(signed decimal number) bool (boolean - true or 
false), or str (sequences of characters)


• Python assigns the type automatically, which is 
*usually* helpful


• A type contains information for the computer 
about how operations work on that type, for 
example, what should the + operator does will 
differ with integers versus strings.


• (We can also have user defined types called 
classes that we will discuss later)

This works

This is better

Unless you really meant



Variables
- use lower case for variable names, with underscores between words


- usually they should be NOUNS:




- exception for bools which should be named like they are asking a question


What are the types here?



Assignment

What is printed here?

Assignment of one variable to another in python 
is a label not a copy  
(unlike many other code languages e.g. C++)




Assignment
Assignment of one variable to another in python 
is a label not a copy  
(unlike many other code languages e.g. C++)




Assignment
But sometimes python tries to be “clever”, and 
decides that you really meant to reassign the variable, 
not amend the original one.


The place this will come into play most is with arrays, 
in particular numpy arrays that we will see later. Just 
be aware of it as a source of bugs and always 
experiment with a trivial example if unsure,  
e.g.

Spot the difference here!



Functions
• Must indent the body of the function 


• Needs a colon after the definition


• Takes in inputs - may also leave them empty but always need the brackets ()


• Returns an output - if none is given the return is void (the value ‘None’ is 
returned) - my suggestion is to always return a value to confirm success


• Variables declared in the body (e.g. ‘sum’ above) are local - they cannot be 
accessed outside the function, e.g. ‘mass’ above


• Functions do things so they are named as VERBS unless they return a bool 
in which case they are named in the same way as the boolean variables. Use 
lower case letters and underscores to separate words as with variables



Functions

Q: Why is the first function better than the second one?



Functions

- It has a name that is a verb, in lower case with underscores


- The name is descriptive and the purpose of the function is immediately clear


- The purpose of the inputs and the return value is also clear


- NEVER NEVER use things like a, b, tmp or foo for variable names, you are just 
hurting someone in the future (probably yourself, or me)

Q: Why is the first function better than the second one?



Functions

Q: Why might I use a function?



Functions

- Makes code more modular


- Therefore more readable


- Therefore easier to debug


- Avoids repetition of code, which again reduces error and makes updating 
easier (imagine we find a way to speed up a function, we only need to adjust 
it in one place)

Q: Why might I use a function?



Loops - for
- naming should make iteration clear


- ‘i’ is often used as an index, but I 
prefer to add ‘i’ to the front of the 
iterator object 


- Very often we will be iterating 
through arrays in which case we can 
directly iterate, but often having the 
index is useful


- Can add a “break” to exit for a 
given condition - useful for error 
handling.



Loops - for
- naming should make iteration clear


- ‘i’ is often used as an index, but I 
prefer to add ‘i’ to the front of the 
iterator object 


- Very often we will be iterating 
through arrays in which case we can 
directly iterate, but often having the 
index is useful


- Can add a “break” to exit for a 
given condition - useful for error 
handling.



Loops - for
- naming should make iteration clear


- ‘i’ is often used as an index, but I 
prefer to add ‘i’ to the front of the 
iterator object 


- Very often we will be iterating 
through arrays in which case we can 
directly iterate, but often having the 
index is useful


- Can add a “break” to exit for a 
given condition - useful for error 
handling.



Loops - while
- I rarely use while, since you can usually reframe it as a for loop with a break.


- However, where it better matches the purpose of the loop, it can make the code 
more readable



Loops

Q: What is my_number at the end of these loops?



Loops

Q: What is my_number at the end of these loops?



Conditionals - if, elif, else
• Always cover all the options


• Any nonzero number is interpreted as True, but avoid this and try to always 
define properly as a bool


• Boolean operators are ‘and’ ‘or’ or ‘not’


• Often used for error checking



Conditionals
Q: What is going wrong here?



Conditionals
Usually with floats you want to do something like this:



Naming quiz: Which of the following would 
(usually) be an acceptable name?
1. A bool called fluffy_cat


2. A float called size_of_cat


3. A bool called is_not_hungry 


4. A function called my_cat()


5. An integer called my_float_value


6. A function called integrate_area()



Naming quiz: Which of the following would 
(usually) be an acceptable name?
1. A bool called fluffy_cat


2. A float called size_of_cat


3. A bool called is_not_hungry 


4. A function called my_cat()


5. An integer called my_float_value


6. A function called integrate_area()

Better called is_fluffy_cat

Good! Better if unit added!

In principle ok, but double negatives confusing

Should be a verb! What is the function doing?

Why is an integer called float?

Looks good!



Plan for today
1. Good grammar for good code - Types, variables, functions, loops


2. Python libraries - NumPy, SciPy and Matplotlib as examples


3. Good coding practise - version control, defensive programming, comments


4. First tutorial - space: the final frontier…



NumPy = numerical python

• Provides an object called an ndarray 
and routines for acting on them:  
mathematical, logical, shape 
manipulation, sorting, selecting, I/O, 
discrete Fourier transforms, basic linear 
algebra, basic statistical operations, 
random simulation and much more.


• Similar to the built in type ‘list’ but 
allows more rapid operations due to 
the use of precompiled C functions 
behind the scenes.



NumPy = numerical python

Q: Why is this dangerous?



NumPy = numerical python

Potential for function overlap -  
numpy contains a HUGE number  

of functions and objects 
if you define a function called sin()


how will in know which to use?

Note the dot allows us to access 
functions and objects within NumPy

(more detail when we learn classes) 



NumPy = numerical python

Numpy 
functions and 

objects

Functions and 
objects in my 

local code

np.sin(x)

Go and get the function from NumPy and apply it to x - crossing a barrier



NumPy = numerical python

Numpy 
functions and 

objects

Functions and 
objects in my 

local code
sin(x)

NumPy functions exist in the current scope, no barrier to access!



MatPlotLib - library for plotting and 
visualisation
• Again conventional to import using 

an alias, now ‘plt’


• Naturally makes plots nice


• So many examples available via their 
website https://matplotlib.org or 
google… 


• Best to just learn as you go from 
existing examples

https://matplotlib.org


SciPy = Scientific Python

• Advanced extensions to NumPy


• Library of numerical algorithms and 
domain-specific toolboxes, including 
signal processing, optimization, 
statistics, and much more


• Typical to import whole submodules 
from scipy and then index into them 
using the dot



SciPy = Scientific Python

Q: Why might you need this?



Plan for today
1. Good grammar for good code - Types, variables, functions, loops


2. Python libraries - numpy, scipy and matplotlib as examples


3. Good coding practise - version control, defensive programming, comments


4. First tutorial - space: the final frontier…



3 points for good code practise
1. Use version control, and use it frequently


2. Defensive programming


3. Commenting (but not too much)



Git - a form of version control



Git - a form of version control
Q: Why use version control?



Git - a form of version control
Q: Why use version control?

So many reasons!


• Stores code so it is not lost


• Able to revert to previous versions when broken


• Able to spot bugs by checking all commits


• Collaboration made easier if several people developing code


• Easy to add documentation and code update management tools


• Can also store data and output files


• Knowledge of coding and experience proven for future employers


• Immortality of your code



Git - a form of version control
• Process for each week tutorial (see the wiki page https://github.com/KAClough/

TopicsInSciComp/wiki/Updating-your-git-repository)


1. Make a Pull Request from my repository into your fork to get the updates


2. Create a branch called e.g. tutorial/week2, and check it out


3. Make your changes, add and commit them


4. Push your changes to the branch - at least daily


5. Repeat until exercises complete, check them against solutions


6. Merge them with your main branch using a pull request


https://github.com/KAClough/TopicsInSciComp/wiki/Updating-your-git-repository
https://github.com/KAClough/TopicsInSciComp/wiki/Updating-your-git-repository
https://github.com/KAClough/TopicsInSciComp/wiki/Updating-your-git-repository


Defensive programming

You will make mistakes.


Often really silly ones!


And you won’t see them.


This is ok! Just be prepared 
for it!




Defensive programming - assertions
Goal is to write code that checks 
itself. Therefore we use  
assertions (better than the  
conditional statements  
seen previously).


- Fail early, fail often -  
check regularly, and in the  
place closest to where the object is initialised


- If you find a bug, always add an assertion or test to avoid it happening again 


- Assertions also help readers of the code to check their understanding of it



Defensive programming - test driven 
development

1. Write a function


2. Call it interactively on 
two or three different 
inputs


3. If it produces the 
wrong answer, fix the 
function and re-run 
that input

1. Write a set of test 
functions


2. Write a function that 
should pass those 
tests


3. If it produces the 
wrong answer, fix the 
function and re-run the 
test functions

Which process is better?



Defensive programming - test driven 
development

If people write tests after writing the thing to be tested, 
they are subject to confirmation bias, i.e., they 

subconsciously write tests to show that their code is 
correct, rather than to find errors


Writing tests helps you to figure out what the function is 
actually supposed to do



Defensive programming - timing

Timing functions is a really 
good way to find 
bottlenecks. 


In simple codes long 
execution times often mean 
you are doing something 
wrong.



Commenting

Q: Which of these comments are useful?



Commenting

Only the last one - the others are redundant and 
can be seen by reading the code (assuming you know Python)


In tech industry the modern paradigm is to reduce comments to an absolute minimum by 
writing longer and more descriptive variable/function names 

In scientific coding a few overly detailed comments doesn’t hurt, especially explaining a non 
trivial function or Python method to a fellow student and non code expert



Summary
1. Good grammar creates good code!


2. Python libraries contain useful functions and objects that we will use


3. Good coding practise includes using version control, doing defensive 
programming, and commenting (but not too much or redundantly)



Tutorial problem this week:
Space the final frontier! See the Week 2 notebook at https://github.com/
KAClough/TopicsInSciComp/tree/main/Notebooks 

These are not necessarily the optimum solutions!

https://github.com/KAClough/TopicsInSciComp/tree/main/Notebooks
https://github.com/KAClough/TopicsInSciComp/tree/main/Notebooks
https://github.com/KAClough/TopicsInSciComp/tree/main/Notebooks
https://github.com/KAClough/TopicsInSciComp/tree/main/Notebooks

