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Chapter 1

Networks: A prelude

Graphs are mathematical entities formed by a set of nodes (vertices) connected
by links (edges). Graph theory is a branch of mathematics that started at a
precise date. It was the genius of Leonhard Euler (1707-1783) that first solved
a combinatorial problem making use of structural properties of graphs. In par-
ticular Leonhard Euler in 1735 solved the problem of the Seven Bridges of
Königsberg.

Figure 1.1: A portrait
of Leonhard Euler (1707-
1783), the founding father
of graph theory.

At the time, the city of Königsberg, Prussia had
seven bridges connecting the banks of the Pregel
River to two large islands. The problem of the
Seven Bridges of Königsberg is to decide whether it
is possible to follow a path that crosses each bridge
exactly once and returns to the starting point. It
is not possible: there is no Eulerian cycle. Euler
proved that such path does not exist by mapping
the problem into a problem defined on a graph, in
this way giving rise to the field of mathematics that
goes under the name of graph theory.
Therefore, graph theory is almost 300 years old,
but here in this module we will mainly discuss of
the new field of Complex Networks which instead is
only fifteen years old.
At the end of the ’90s in fact two papers (Watts
& Strogatz ”small word” paper and Barabasi &
Albert ”Emergence of scale-free networks” paper)
have proposed a new paradigm for studying com-
plex systems. The fundamental idea behind these

works was that complex systems as different as the Internet, complex infrastruc-
tures, social networks, cellular networks all have an underlying network struc-
ture describing the complex set of interactions between the elements forming
these different systems. A network differs from a graph because it is a specific
graph describing the interactions present in a specific complex system. In the
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two cited seminal papers it was shown that, despite the diversity of the complex
systems that can be described by complex networks, there are some properties
of these networks that are universal: i.e. they are common to a large variety of
complex systems. These universalities suggest that the organizational proper-
ties of self-organized complex systems that emerge as the outcome of biological
evolution (like the cellular networks or the brain ) or as the product of non-
centrally-organized human activity (like the Internet or the social networks)
present similarity beyond expectations. These properties of complex systems
are responsible for their robustness and for their efficiency.

Figure 1.2: (left panel) The city of Königsberg. The problem of the seven
bridges of Königsberg (the Eulerian cycle problem) was solved by L. Euler in
1735. (right panel) A visualization of the Internet as a complex network. The
characterization of the navigability of this network and of the quantification
of its robustness are new challenges for the scientific community of the XXI
century working in complex network theory.

1.1 Graphs and Networks (E)

In graph theory a graph is defined as follows:

Definition 1. A graph is an ordered pair G = (V,E) comprising a set V of
vertices connected by the set E of edges.

In network theory, the graphs that describe a specific complex system are
called networks . The vertices of these graphs are usually called nodes and the
edges are usually called links. In the following we give the network definition.

Definition 2. A network is the graph G = (V,E) describing the set of interac-
tions between the constituents of a complex system. The vertices of a network
are called nodes and the edges links. The network size N is the total number of
nodes in the network N = |V |.The total number of links L is given by L = |E|.
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Although, there is a clear difference in the definition of a network (describing
a complex system) and a graph (that is the abstract mathematical object formed
by vertices and edges), in the field of complex networks the term networks is
often used as a synonym of a graph. In the table 1.1 you can find a ”dictionary”
between graph theory terms and complex network terms. In this course we will
adopt the complex network terminology.

Graph theory term Complex network term
Graphs Network
Vertices Nodes
Edges Links
Cycles Loops
Loops Tadpoles

Table 1.1: Graph-theory/Network-theory Dictionary of common terms

1.2 Examples of Graphs and Networks (E)

Complex networks are found in a large variety of complex systems, it is suffi-
cient that you start “to think networks” and you will discover that networks are
ubiquitous. For example, our society is formed by a complex set of interactions
between the individuals linked by friendship ties, family ties, collaborative in-
teraction, etc... Also in animal societies networks are important. In ecology
we can define food-webs where the interactions are of the type prey-predator
but we can also define mutualistic networks where different species cooperate
to increase reciprocally their fitness (e.g. the bee and the flower).
Networks are not only found in human and animal societies,also if we want
to describe the complex organization of a cell or of the brain it is essential to
consider networks. The cell is formed by several molecules, the DNA formed
by genes, the proteins, and the metabolites. These constituents of the cell are
interacting and we will not have living organisms without these interactions. It
is nowadays usual to consider several cellular networks described briefly in the
following.

• The metabolic network of a certain organism is formed by its metabo-
lites that react chemically thanks to some proteins called enzymes. The
metabolic network is responsible for providing the energy to the cell and
producing the biomass necessary to allow its duplication.

• The protein interaction network of a certain organism describes the set
of interactions between proteins. Proteins bind to each other and form
protein complexes to perform complex cellular functions.

• The transcription network of a certain organism connects the genes of that
organism and is responsible for what is called the “cellular regulation”.
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Complex networks Nodes Links

Actors network Actors Co-acting on a movie
Collaboration networks Scientists Co-authors in one paper

Citation networks Scientific papers Citation
Facebook network Individuals Facebook friends
Metabolic network Metabolites Common chemical reaction

Protein-Interaction networks Proteins Physical interaction
Transcription networks Genes Regulation

Brain network Neurons Synaptic connections
Internet Routers Physical lines

World-Wide-Web Webpages URL’s addresses
Airport network Airports Flight connections

Power-grids Power plants Electric grid

Table 1.2: Examples of complex networks

Cellular regulation is something very crucial for the cell and allows for
example the cells in the heart or in the brain of the same person to be
different although they have an identical DNA. In transcription networks
some genes when transcribed produce a special type of proteins called
transcription factors. These proteins can bind to the DNA and might
switch on or off the transcription of other genes.

Also man-made technological objects can be described as networks. Major ex-
amples include:

• The Internet formed by routers connected by physical lines;

• The World-Wide-Web (WWW) that is distinct from the Internet and is
the virtual network of webpages and URL addresses between the webpages;

• The Airport network that is formed by airports connected by flight con-
nections;

• The Power grids formed by power-plants connected by the electric grid.

1.3 Labelled, Simple, Undirected, Directed, Weighted
and Signed Networks (E)

1.3.1 Labelled networks

Networks represent real complex systems, so usually the nodes of the network
have a specific “name”: Name of an individual in social networks, name of a pro-
tein in protein interaction networks, name of a species in food webs, etc. In this
case we say that networks are labelled.
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Figure 1.3: Labelled network of N = 7 nodes i =
1, 2 . . . , 7 and L = 8 links

.

Definition 3. A labelled
network, of network size
N , is formed by a set
V of N distinguishable
nodes indicated by a dif-
ferent and unique label
i = 1, 2, . . . , N and by a
set of links E character-
izing the interactions be-
tween pairs of nodes.

In figure 1.3 you can
see an example of a la-

belled network of N = 7 nodes and L = 8 links.
A labeled network can be simple, undirected, directed, weighted and signed

depending on the properties of their links.

1.3.2 Directed and Undirected networks

A link can be either directed or undirected.

Definition 4. A directed link indicates an interaction between nodes that is
not symmetrical. The graphical representation of directed links is an arrow. If
node j points to node i the arrow starts from node j and points to node i (see
Fig. 1.4).
A directed network is a network where all the links are directed.
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Figure 1.4: Labelled directed network of N = 7
nodes i = 1, 2 . . . , 7 and L = 10 directed links

.

For example in a so-
cial network two individ-
uals might be connected
if one calls the other one
by mobile phone. This
is a case of directed in-
teraction since it is not
guaranteed that if j calls
i then i calls j in the
given time window over
which the network is ag-
gregated. Interestingly,
in several sociological sur-
veys where for example
students in a school are
asked to indicate their

friends, it was found that a large fraction of friendships was not reciprocated
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suggesting that social networks might be intrinsically directed. In biology, tran-
scription networks are also directed because regulation is a non symmetric type
of interaction: if a gene j regulates gene i it is not true in general that gene i
regulates gene j. In technological networks the World-Wide-Web is a beautiful
example of directed networks because if a webpage j points to a webpage i it is
not guaranteed that the reciprocal is also true.

Definition 5. An undirected link indicates a symmetric interaction. The
graphical representation of undirected links is a line. If node j is linked to
node i then also node i is linked to node j (see Fig. 1.3).
An undirected network is a network in which every link is undirected.

Although the friendship might be considered as a directed interaction several
social networks are undirected. Collaboration networks are undirected both in
the case of co-acting actors or collaborating scientists, also usually friendship
in online social networks indicates only undirected links. For example, if an
individual i is a Facebook friend with node j then also j is a Facebook friend
with i. In biology, protein interaction networks are also undirected because if
protein i binds to protein j to form a protein complex, also the reciprocal is true.
In technological networks the Internet is an example of an undirected network
because if the router j is linked to the router i the reciprocal is also true.

1.3.3 Weighted and Unweighted networks

Links can be weighted or unweighted. The weight of the link is either an integer
or a real number. Weighted networks describe the situation in which different
interactions have different intensity. Therefore weights are fundamental if we
want to characterize a variety of systems, because in many situations not all the
links have the same relevance.

Definition 6. A weighted link between node i and node j is a link to which
we assign an integer or real number wij indicating the intensity of the interac-
tion. When the weight is integer the weighted link is also called multiple link.
Weighted networks can be either directed or undirected.

The graphical representation of a multiple link between node i and node j
is given by a number wij of lines between node i and node j (see Fig. 1.5). The
graphical representation of a weighted link between node i and node j is a line
associated with the weight wij (see Fig. 1.5).

Given the definition of weighted links we can define a weighted network as
in the following.

Definition 7. A weighted network is a network where all the links are weighted.

Weights are very important in social networks where there is an important
scientific debate regarding the role of weak and strong ties in society for the
efficiency of the communication and spreading of opinions and behaviours. In
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Figure 1.5: Two examples of weighted networks. In one case (left panel) the
weights are real numbers. In the other case (right panel) the network contains
multiple links such as the links connecting the pair of nodes (6, 5) and (7, 1).
The link connecting node 1 to itself is a tadpole.

a collaboration network two people can just co-author a single paper of co-
author multiple papers, also a pair of actors might act in few or several films
together. Weights are also important for transportation networks. For example
in the airport networks, we can associate to each flight connection the number
of travellers flying each week in the given direction.
If all the links of a network have the same intensity, and a link is either present or
absent, we say that the links of the network are unweighted, i.e. it is unnecessary
to define a weight of the links.

Definition 8. An unweighted network is a network in which all the links are
unweighted. Unweighted networks can be either directed or undirected.

1.3.4 Signed or unsigned networks (NE)

Links can also be signed or unsigned. Signed links are used when interactions of
opposite type are both present in the same network. In a social network we can
associate a sign ±1 to links indicating whether an interaction is positive (such
as friendship) or negative (such as enmity).

Definition 9. A signed link is a link associated with a sign (either positive
or negative). Signed networks can be also weighted and/or directed. A signed
network is a networks where all the links are signed.

As we mentioned already social networks might be signed. Another major
example of signed network is the transcription network in which one gene can be
either an activator or an inhibitor of any other regulated gene. An expressed ac-
tivator gene activates the transcription of the regulated gene, while an expressed
inhibitor gene inhibits the transcription of the regulated gene.

Definition 10. An unsigned network is a network in which all the links have
the same “sign”. Therefore we can neglect the specification of the sign of the
links.
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1.3.5 Tadpoles

A special type of links are tadpoles.

Definition 11. Tadpoles are links that connect a node with itself. Tadpoles can
be directed or undirected.

Tadpoles are present for example in transcription networks where it can
happen that one gene regulates its own transcription. In figure 1.5 (right panel)
we show an example of weighted network with a tadpole.

1.3.6 Simple networks

In social networks, collaboration networks, and in transportation networks there
are no tadpoles. For example the network in Figure 1.6 is a simple network.
Simple networks are the most basic mathematical entities that can be called
networks.

Definition 12. A simple network is an undirected, unweighted, and unsigned
network without tadpoles.

1.4 Representation of a network: The Edge list
and the Adjacency matrix (E)

A labelled network can be represented by means of an edge list or by means of
and adjacency matrix. In the following we will consider first the simple networks,
then directed, weighted, signed and finally bipartite networks.

1.4.1 Simple networks

Edge list of a simple network

Definition 13. An edge list of a simple network is a list of L pairs of node
labels (j, i) indicating that between node j and node i there is a link. Here L
indicates the total number of links (edges) in the network.

The edge list of a simple network does not allow for redundancies. If a
link is listed as (j, i) it cannot be listed also as (i, j) and vice versa. In
the following we give the edge list of the labelled network in Figure 1.6: i.e.
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Figure 1.6: Labelled network of N = 7 nodes i =
1, 2 . . . , 7 and L = 8 links.

.

Edge list

(5, 4)

(2, 6)

(6, 3)

(6, 5)

(7, 1)

(3, 7)

(4, 7)

(7, 6).

(1.1)

Adjacency matrix of a simple network

Definition 14. The adjacency matrix of a simple network is an N ×N matrix
A of elements

Aij =

{
1 if node j is linked to node i
0 otherwise

Since in a simple network, if node j is linked to node i also node i is linked to
node j, the adjacency matrices of simple networks are always symmetric. Since
in a simple network there are no tadpoles then the diagonal matrix elements are
equal to zero. As an example in the following we provide the adjacency matrix
of the network in Figure 1.6.

A =



0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 0 1 1
0 0 0 0 1 0 1
0 0 0 1 0 1 0
0 1 1 0 1 0 1
1 0 1 1 0 1 0


.

1.4.2 Directed networks

Edge List of directed networks

Definition 15. An edge list of a directed network is a list of L pairs of ordered
node labels (j, i). Each ordered pair of labels (j, i) indicates that node j points
to node i. L indicates the total number of directed links (edges) in the network.

In the following we give the edge list of the labelled network in Figure 1.7: i.e.
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Figure 1.7: Labelled directed network of N = 7
nodes i = 1, 2 . . . , 7 and L = 10 links.

Edge list

(5, 4)

(6, 2)

(7, 6)

(6, 5)

(5, 6)

(7, 1)

(1, 7)

(7, 4)

(7, 3)

(6, 3).

Adjacency matrix of a
directed network

Definition 16. The adjacency matrix of a directed network is an N×N matrix
A of elements

Aij =

{
1 if node j points to node i
0 otherwise

The adjacency matrix of a directed network is asymmetric. In fact if node
j points to node i it is not true in general that node i points to node j. As
an example in the following we provide the adjacency matrix of the network in
Figure 1.7.

A =



0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 0 1 1
0 0 0 0 1 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 1
1 0 0 0 0 0 0


.

1.4.3 Weighted networks

Edge List of a Weighted Network

Definition 17. An edge list of a weighted network is a list of L triplets
(j, i, wij). For an undirected network each triple (j, i, wij) indicates that be-
tween node j and node i there is a link of weight wij. Here L indicates the total
number of links in the network. For a directed network each triple (j, i, wij) in-
dicates that node j points to node i with a link of weight wij, where L indicates
the total number of directed links (edges) in the network.
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Figure 1.8: Example of weighted network
.

The edge list for the weighted network in figure 1.8 is given by

Edge list

(2, 4, 1.2)

(4, 3, 5.3)

(3, 2, 0.5)

(6, 2, 3.2)

(5, 6, 2.1)

(5, 3, 2.3)

(1, 7, 0.7)

(7, 6, 9.3)

(7, 5, 2.7)

(6, 1, 2.1).

Adjacency matrix of a weighted network

Definition 18. The adjacency matrix of a weighted network is a N×N matrix
A of elements Aij defined as follows:

Undirected Weighted network

Aij =

{
wij if node j is linked to node i with a link of weight wij ,
0 otherwise

Directed Weighted network

Aij =

{
wij if node j points to node i with a link of weight wij ,
0 otherwise



14CHAPTER 1. G. BIANCONI: INTRODUCTION TO NETWORK THEORY

The adjacency matrix of a weighted undirected network is symmetric the adja-
cency matrix of a weighted directed network is asymmetric. For example the
adjacency matrix of the undirected unweighted network in Figure 1.8 is given
by

A =



0 0 0 0 0 2.1 0.7
0 0 0.5 1.2 0 3.2 0
0 0.5 0 5.3 2.3 0 0
0 1.2 5.3 0 0 0 0
0 0 2.3 0 0 2.1 2.7

2.1 3.2 0 0 2.1 0 9.3
0.7 0 0 0 2.7 9.3 0


.

1.4.4 Signed Networks

Signed Networks can be treated as weighted networks with weights including
the sign of the links.

1.4.5 Tadpoles

A tadpole linking node i to itself can be represented in a edge list as (i, i) and in
a weighted edge list as (i, i, wii), and can be represented by a diagonal element
of the adjacency matrix Aii = 1 for an unweighted network and as Aii = wii for
a weighted network.

1.5 Bipartite Networks (E)

In several cases a complex systems has an underlying bipartite network struc-
ture.

Definition 19. A bipartite network GB = (V,U,E) is a network formed by
two non overlapping sets of nodes U and V and by a set of links E, such that
every link joins a node in V with a node in U .

We call the number of nodes in V , |V | = NV and the number of nodes in
U , |U | = NU . We indicated the nodes in the set V by NV integer numbers
1, 2, i, . . . , NV and the nodes in U by NU latin letters a, b, c . . .. Bipartite net-
works can be extremely useful in order to represent the membership of one node
i to a group a. In this case NU indicates the number of groups in the system.
In Table 1.5 a series of complex systems that can be represented as a bipartite
network is listed.

1.5.1 Incidence matrix

A bipartite network GB = (V,U,E) is described by an incidence matrix.

Definition 20. The incidence matrix of a bipartite network GB = (V,U,E) is
an NV ×NU matrix of elements Bi,a defined as follows:



1.5. BIPARTITE NETWORKS (E) 15

Bipartite network Nodes i ∈ V Groups a ∈ U
Bipartite Actors network Actors Films

Bipartite Collaboration networks Scientists Papers
Bipartite Board of Directors Directors Board of a company
Bipartite Metabolic network Metabolites Chemical reaction

Table 1.3: Examples of bipartite complex networks

Unweighted, Undirected Bipartite network

Bi,a =

{
1 if node i is linked to node a
0 otherwise.

Weighted, Undirected Bipartite network

Bi,a =

{
wi,a if node i is linked to node a with weight wi,a

0 otherwise.

1

b

2 a

3

d4

c

5

Figure 1.9: Example of a bipartite undi-
rected and unweighted network of NV =
5 nodes and NU = 4 groups.

In Figure 1.9 we show an example
of a bipartite undirected network with
NV = 5 and NU = 4. The incidence
matrix B of dimension NV × NU of
the bipartite network in Figure 1.9 is

B =


0 1 0 0
1 0 0 0
1 0 0 1
1 1 1 0
1 0 1 0

 .

When using bipartite networks to
describe the membership of some
nodes in same groups, the unweighted
and undirected bipartite networks are
used.However, there are occasions in
which also directed bipartite networks
are useful. For example this is the
case for the bipartite metabolic net-
works, where metabolites can be ei-
ther the reactant or the product of
a chemical reaction, and in this case
we can adopt a convention according
to which the reactants of a chemical
reaction point to the reaction itself
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while the products of the reaction are
pointed at by the chemical reaction.
The definition can be naturally ex-
tended also to directed bipartite net-
works by considering at the same time

the incidence matrix B of elements Bi,a indicating if node a points to the node i
and the incidence matrix B′ of elements B′a,i indicating if node i points to node
a.

1.5.2 Projections of the unweighted and undirected bipar-
tite network (NE)

From a single unweighted and undirected bipartite network GB = (V,U,E) we
can extract two projection networks: GV = (V,EV ) and GU = (U,EU ). We will
call the projection network GV the node projection network, and the projection
network GU the group projection network.

The Node Projection Network (NE)

Definition 21. The node projection network is a network between the nodes
i ∈ V . Two nodes i and j are linked in the node projection network if they
belong to at least one common group a ∈ U in the bipartite network.

If the original bipartite network is unweighted, the node projection network
is weighted and contains tadpoles. Moreover, it is characterized by the weighted
undirected adjacency matrix P of size NV ×NV and matrix elements Pij indi-
cating the number of groups to which both node i and node j belong, i.e.

Pij =
∑
a∈U

Bi,aBj,a =
∑
a∈U

Bi,aB
>
a,j =

[
BB>

]
ij
. (1.2)

1 11
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Figure 1.10: The node projection of the
bipartite network in Figure 1.9.

Therefore we have

P = BB>. (1.3)

From the Eq. (1.2), it follows that the
matrix P has diagonal elements Pii
indicating the number of groups to
which node i belongs. The 5 × 5 ad-
jacency matrix P of the node projec-
tion network (shown in Figure 1.10)
of the bipartite network in Figure 1.9
is given by

P =


1 0 0 1 0
0 1 1 1 1
0 1 2 1 1
1 1 1 3 1
0 1 1 1 2

 .
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The Group Projection Network (NE)

Definition 22. The group projection network is a network between the groups
a ∈ U . Two groups a and b are linked in the group projection network if at least
one node belongs to both groups.

If the original bipartite network is unweighted, the group projection net-
work is weighted and contains tadpoles. Moreover, it is characterized by the
weighted undirected adjacency matrix P̃ of size NU ×NU and matrix elements,
P̃ab indicating the number of nodes belonging to both groups a and b

P̃a,b =
∑
i∈V

Bi,aBi,a =
∑
i∈V

B>a,iBi,b =
[
B>B

]
ab
. (1.4)

Therefore we have

P̃ = B>B. (1.5)

From the Eq. (1.4), it follows that the matrix P̃ has diagonal elements P̃aa indi-
cating the number of nodes belonging to group a.

4
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1

2

1 1

2
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c

d

b

Figure 1.11: The group projection net-
work of the bipartite network in Figure
1.9.

The 4 × 4 adjacency matrix P̃ of the
group projection network (shown in
Figure 1.11) of the bipartite network
in Figure 1.9 is given by

P̃ =


4 1 2 1
1 2 0 0
2 1 2 0
1 0 0 1

 .
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Chapter 2

Structural properties of
networks

2.1 Introduction (E)

Complex networks are usually the outcome of a stochastic process. Nevertheless
complex network are not completely random, because they are self-organized to
perform specific tasks. The structural properties of complex networks have very
important effects on the dynamics that can be defined on them. Therefore, a
general paradigm of complex network theory is that the function of a network
is reflected and affected by its structural properties. For this reason one of the
most fundamental roles of network theory is to define a series of properties of
complex networks able to characterize their structure.

2.2 Network size and total number of links (E)

The most fundamental structural properties of a network are the network size
N indicating the total number of nodes in the network, and the total number
of links L in the network.
The large majority of complex networks are formed by a sufficiently large num-
ber of nodes N linked by non regular interactions, that the characterization of
these networks usually requires computational power.

2.2.1 The “minimal complex networks”

The number of genes of the “minimal cell” reconstructed in the laboratory of C.
Venter includes N = 256 genes, and the smallest known neural network of the
worm c.elegans includes N = 302 neurons. Already these “ minimal networks”
are sufficiently complex to perform incredible complex functions. The number

19
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Figure 2.1: An example of “minimal complex network”: the c.elegans neural
network with N = 302 nodes. The thickness of the links is proportional to the
weights of the links, the size of the nodes is proportional to their degree. The
figure does not show the direction of the links.



2.2. NETWORK SIZE AND TOTAL NUMBER OF LINKS (E) 21

of genes in the human DNA is larger N = 23, 299 but surprisingly small com-
pared to expectations before the launch of the Genome Project.

2.2.2 Large Complex networks

Many other complex networks are significantly larger. For example the human
brain is formed by 1010−1011 neurons or the online social networks have reached
very large network sizes of N ' 108. Nevertheless these network sizes remain
much smaller than the Avogadro Number NA ' 6×1023 that indicates the total
number of molecules in a mole of a substance.

In table 2.1 we indicate the order of magnitude of a series of complex net-
works.

Networks Network size N
Brain up to 1011

Metabolic Networks 103

Social Networks up to 109

Power-grids up to 105

Internet up to 105

WWW 109

Online social networks 108

Table 2.1: The network size of several complex networks

2.2.3 The total number of links L in the network

The total number of links in a network can be expressed in terms of the adja-
cency matrix A. For a undirected network each link (i, j) with i 6= j is repre-
sented by two matrix elements Aij = Aji = 1, while each tadpole incident to
node i is represented by a single matrix element Aii. Therefore we have

L =
1

2

N∑
i=1

N∑
j=1

Aij +
1

2

N∑
i=1

Aii, (2.1)

where δij = 1 if i = j and zero otherwise. This expression, in absence of tadpoles
reduces to

L =
1

2

N∑
i=1

N∑
j=1

Aij . (2.2)

For a directed network each directed link between node j and node i is rep-
resented by a single matrix elements Aij = 1, while each directed tadpole is
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represented by a single matrix element Aii. Therefore we have

L =

N∑
i=1

N∑
j=1

Aij . (2.3)

2.3 Degrees, Degree Sequences and degree dis-
tributions (E)

2.3.1 Degrees

The degrees are very fundamental local properties of the nodes.

Definition 23. The degree ki of node i in an undirected network is given by
the total number of links incident to node i. In a directed network we distinguish
between in-degrees and out-degrees. The in-degree kini of node i in a directed
network is given by the total number of nodes pointing to node i. The out-degree
kouti of node i in a directed network is given by the total number of nodes to
which node i points.

For simplicity here we consider only unweighted networks. In this case the
degree (or in-degree/out degree) of a node can be calculated directly from the
adjacency matrix A. Let us consider in the following the case of directed and
undirected networks separately.

Undirected networks

The degree ki of a generic node i in an undirected network is given by

ki =

N∑
j=1

Aij =

N∑
j=1

Aji, (2.4)

where we have use the fact that in this case the adjacency matrix A is symmetric,
and the fact that every tadpole incident to node i increases its degree by 1. In
a simple network of N nodes the maximal possible degree is k = N − 1, the
minimal degree is k = 0.

Directed network

The in-degree kini and the out-degree kouti of node i in a directed network is
given by

kini =

N∑
j=1

Aij ,

kouti =

N∑
j=1

Aji, (2.5)
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where here, the in-degree and the out-degree are in general different because the
adjacency matrix is asymmetric. In a directed network of N nodes the maximal
possible in-degree is kin = N − 1, the minimal degree is kin = 0,the maximal
possible out-degree is kin = N − 1, the minimal degree is kin = 0.

2.3.2 Degree sequence, Average Degree, Maximum De-
gree

Definition 24. The degree sequence of an undirected network is the ordered
sequence {ki} = {k1, k2, . . . , ki, . . . , kN} of the degrees ki of all the nodes of the
network (i = 1, 2, . . . N).
The in degree sequence of an directed network is the ordered sequence
{kini } = {kin1 , kin2 , . . . , kini , . . . , kinN } of the in-degrees kini of all the nodes of the
network (i = 1, 2, . . . , N). The out degree sequence of an directed network is
the ordered sequence {kouti } = (kout1 , kout2 , . . . , kouti , . . . , koutN ) of the out-degrees
kouti of all nodes of the network (i = 1, 2, . . . , N).

Undirected network

Given the degree sequence of an undirected network, we can definite the average
degree 〈k〉 of the network defined as

〈k〉N =

N∑
i=1

ki =

N∑
i=1

N∑
j=1

Aij =

N∑
i=1

N∑
j=1

Aji. (2.6)
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Figure 2.2: Undirected network of N =
7 nodes and L = 8 links

.

The average degree of a simple net-
work is related to the total number of
links in the network by the expression

L =
1

2
〈k〉N. (2.7)

The maximum degree of the networks
will be indicated by K i.e.

K = max
i
ki. (2.8)

The degree sequence of the undirected
network in Figure 2.2 is given by
{1, 1, 2, 2, 2, 4, 4}. The average degree

of this network is given by 〈k〉 = 16/7 ' 2.86 and the total number of links L
is given by L = 8.
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Directed network

For a directed network the average in-degree 〈kin〉 is equal to the average out-
degree 〈kout〉. In fact we have,

〈kin〉N =

N∑
i=1

kini =

N∑
i=1

N∑
j=1

Aij =

N∑
j=1

koutj = 〈kout〉N. (2.9)
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Figure 2.3: Directed network of N = 7
nodes and L = 10 links

.

The averaged in-degree and the aver-
age out-degree of the network are re-
lated to the total number of links in
the network by the relation

L = 〈kin〉N = 〈kout〉N. (2.10)

The maximum in-degree and maxi-
mum out-degree of the networks will
be indicated by Kin,Kout respec-
tively with i

Kin = max
i
kini ,

Kout = max
i
kouti . (2.11)

The in-degree sequence of the directed network in Figure 2.3 is given by
{1, 1, 2, 2, 1, 2, 1}, while the out-degree sequence is given by {1, 0, 0, 0, 1, 2, 3}.
The average in-degree and the average out-degree of this network is given by
〈kin〉 = 10/7 ' 1.43 and the total number of links L is given by L = 10.

2.3.3 The degree distribution of the network

The degree of a node is a local property of the network but by considering
the degree sequence of the network we can characterize some important global
property of the network. The global organizational structure induced by the
degree sequence, is characterized by the degree distribution of the network.

Definition 25. The degree distribution P (k) of a undirected network is the
fraction of nodes of degree k. It also indicates the probability that a randomly
chosen node of the network has degree k.
The in-degree distribution P in(k) of a directed network if the fraction of nodes
of in-degree k. It also indicates the probability that a randomly chosen node of
the network has in-degree k.
The out-degree distribution P out(k) of a directed network is the fraction of nodes
of out-degree k. It also indicates the probability that a randomly chosen node of
the network has out-degree k.
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Undirected networks

Let us indicate with N(k) is the total number of nodes of the network with
degree k, i.e.

N(k) =

N∑
i=1

δ(k, ki), (2.12)

where δ(k, ki) indicates the Kronecker delta, i.e. δ(k, ki) = 1 if k = ki and
δ(k, ki) = 0 otherwise. The degree distribution of an undirected network is
given by P (k) given by

P (k) =
1

N
N(k) =

1

N

N∑
i=1

δ(k, ki). (2.13)

The degree distribution non-negative P (k) ≥ 0 ∀k, and normalized

K∑
k=0

P (k) = 1. (2.14)

Starting from a given degree sequence the calculation of the degree distribution
is therefore very simple. For example, starting from the degree sequence of
the undirected network in Figure 2.2, i.e. {1, 1, 2, 2, 2, 4, 4} we can evaluate the
degree distribution P (0) = 0, P (1) = 2/7, P (2) = 3/7, P (3) = 0, P (4) = 2/7
and P (k) = 0 for k > 4.

Directed networks

Let us indicate with N in/out(k) is the total number of nodes of the network with
in/out-degree k, i.e.

N in(k) =

N∑
i=1

δ(k, kini ),

Nout(k) =

N∑
i=1

δ(k, kouti ), (2.15)

where δ(k, ki) indicates the Kronecker delta. The in/out-degree distribution of
an directed network is given by P in/out(k)

P in(k) =
1

N
N in(k) =

1

N

N∑
i=1

δ(k, kini )

P out(k) =
1

N
Nout(k) =

1

N

N∑
i=1

δ(k, kouti ). (2.16)
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The in/out-degree distributions are non negative P in/out(k) ≥ 0 ∀k and nor-
malized, i.e.

Kin∑
k=0

P in(k) = 1,

Kout∑
k=0

P out(k) = 1. (2.17)

Starting from a given in/out degree sequence the calculation of the in/out de-
gree distribution is therefore very simple. For example the in-distribution of
the directed network in Figure 2.3 with in-degree sequence {1, 1, 2, 2, 1, 2, 1} is
given by P in(0) = 0, P in(1) = 4/7, P in(2) = 3/7 and P in(k) = 0 for k > 2. The
out-degree distribution of the same network can be calculated starting from the
out-degree sequence {1, 0, 0, 0, 1, 2, 3} and is given by P out(0) = 3/7, P out(1) =
2/7, P out(2) = 1/7, P out(3) = 1/7 and P out(k) = 0 for k > 3. The degree dis-
tribution of complex networks have large impact on their robustness properties
under random failure or targeted attacks and on the behaviour of dynamical
processes defined on them. Moreover statistical properties of the degree distri-
bution can change also the local properties of the networks such as the number
of subgraphs such as loops of cliques find in the networks. The different classes
of degree distributions will be discussed in Chapter 4.

2.4 Paths (E)

Networks can used to search and navigate complex systems and in general to
transmit information. For example, when we “browse the Internet” we follow
paths on the World-Wide-Web, when we take a connecting flight we explore
paths in the airport network, when we discover that two of our friends are
already friends essentially we discover a path in our social network.

Definition 26. A path of a network, is a sequence of nodes, such that every
consecutive pair of nodes is connected by a link. A directed path of a directed
network, is a path, with the links being directed from each node to the following
one.

Each path, either directed or undirected has its path length.

Definition 27. The path length is equal to the number of links traversed
along the path, including eventual repetitions in the case of paths that intersect
themselves.

Finite paths have an initial node and a final node. Eventually paths can
come back to the starting node. In this case we say that the path is a cyclic
path.
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Definition 28. A path that starts from a node and finish on the same node
is called a cyclic path, paths that start and finish on different nodes are called
acyclic.

Acyclic paths that do not visit any node more than once are called self-
avoiding paths. Cyclic paths that do not visit any node different from the
starting node more than once are called self-avoiding cyclic paths.

Undirected networks

In Figure 2.4 we show an undirected network. In the following we describe differ-
ent paths on this network

5 4

6

2

3

7

1

Figure 2.4: Undirected network of N =
7 nodes and L = 8 links

.

Path P1 = (2, 6, 5, 4)

Path P2 = (2, 6, 7, 4)

Path P3 = (2, 6, 3, 7, 1)

Path P4 = (2, 6, 7, 1)

Path P5 = (2, 6, 7, 3, 6, 7, 1)

Path P6 = (6, 7, 3, 6)

Both paths P1 and P2 have initial
node i = 2 and final node j = 4.
Moreover both paths have the same
length ` = 3. The three paths
P3,P4,P5 have initial node i = 2 and

final node j = 1 but they have different lengths given by 4, 3, 6 respectively.
Finally the path P6 is a cyclic path of length 3. All the listed paths except the
path P5 are self-avoiding paths.

Directed Networks

In Figure 2.5 we show an directed network. In the following we describe different
directed paths on this network
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Figure 2.5: Undirected network of N =
7 nodes and L = 10 links

.

Path Pa = (6, 5, 6)

Path Pb = (6, 5, 6, 5)

Path Pc = (1, 7, 6, 2)

Path Pd = (7, 4)

Path Pe = (7, 1, 7)

Path Pf = (7, 1, 7, 3).

The directed paths Pa and Pe are self-
avoiding cyclic paths, while the di-
rected path Pb is a non-self-avoiding

cyclic path.
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2.4.1 Number of paths between two nodes

The number of paths (directed path in a directed network) of length n joining
two nodes j and i in a given network, can be expressed in terms of the adjacency
matrix A of the network.

In particular here we want to prove the following theorem:

Proposition 1. In a unweighted network, the number of paths of length n
joining node j to node i is given by

Nn
ij = [An]ij (2.18)

where [An]ij indicates the matrix element i, j of the matrix An.

Proof. The theorem is true for path of length n = 1. In fact the number of
paths of length n = 1 between two given nodes can be either 1 or 0. Moreover
the matrix element [A]ij = 1 if there is a path between node j and node i and
zero otherwise by definition. Therefore the theorem is true for n = 1.
Let us now show that the theorem is also true for n = 2. The product Ai,rAr,j =
1 if and only if both Air = 1 and Arj = 1, i.e. if an only if there is a path (j, r, i)
of length n = 2 joining node j to node i. If the there is no path j, r, i, then
AirArj = 0. Calculating the number of paths of length n = 2 in the network
means performing the sum of AirArj over all possible intermediate nodes r.
Therefore we have

N 2
ij =

N∑
r=1

AirArj = [A2]ij . (2.19)

Therefore the theorem is true also for n = 2. We can generalize this argument
to path of a generic length n between node j and node i. Such paths are of
the form (j, r1, r2, . . . , rn−1, i). The product Air1Ar1r2 . . . Arn−2rn−1

Arn−1,i = 1
if and only if the path (j, r1, r2, . . . , rn−1, i) exist, otherwise the product is zero.
Calculating the number of paths of length n in the network means performing
the sum of Air1Ar1r2 . . . Arn−2rn−1

Arn−1,i over all possible intermediate nodes
r1, r2, . . . , rn−1. Therefore we have

Nn
ij =

N∑
r1=1

N∑
r2=1

. . .

N∑
rn−1=1

Air1Ar1r2 . . . Arn−2rn−1Arn−1,i = [An]ij . (2.20)

Therefore the theorem is valid for paths of any length n.

From this theorem, used in the case in which the starting node and the
ending node of the path is the same, we get that the number Nn

ii of cyclic paths
of length n starting from node i and coming back to i, are given by

Nn
ii = [An]ii (2.21)
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where [An]ii indicates the matrix element i, i of the matrix An. Finally, the
total number of cyclic paths of length n in a network of adjacency matrix A is
given by

N∑
i=1

Nn
ii = TrAn. (2.22)

In figure 2.6 we show an undirected network of N = 4 containing cyclic
paths.
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1

2

34

Figure 2.6: An undirected network of
N = 4 nodes containing cyclic paths.

The adjacency matrix A of the
network is

A =


0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

 .

The first powers of this matrix are

A2 =


2 1 1 1
1 2 1 1
1 1 3 1
1 1 0 1

 , A3 =


2 3 4 1
3 2 4 1
4 4 2 3
1 1 3 0

 .

Therefore the number of cyclic paths of length n = 3 starting and ending on
node i = 1, 2, 3, 4, is given by N 3

11 = N 3
22 = N 3

33 = 2 and N 3
44 = 0.

2.4.2 Euleurian and Hamiltonian Cycles

In networks there are some special types of cyclic paths, the Eulerian and Hamil-
tonian cycle of the network. As we mentioned in chapter 1 the existence of an
Eulerian cycle in the network formed by the seven bridges of Könisberg, the
mainland and the two island on the Pregel River, was the original problem
solved by Euler and signing the start date of graph theory.

Definition 29. An Eulerian cycle of a network is a cyclic path that traverse
each link of the network exactly once.

The following theorem was first proven by Euler (in particularly he stated
the theorem and he proven the necessary condition).

Theorem 2.4.1. An undirected network has an Eulerian cycle if and only if
all its nodes have even degrees and each pair of its non-zero-degree nodes can be
connected by at least one path (i.e. they belong to a single connected component).

Proof. Here we will prove only the necessary condition that is very easy to prove.
In fact, if there is a Eulerian cycle in the network, the Eulerian cycle will visit
every non-zero degree node of the network at least one time. If the Eulerian
path visit a node reaching it from a link, it should be able to leave the node
following another link not yet traversed by the cyclic path. Since the Eulerian
cycle must visit all the links, it follows that if a network has an Eulerian cycle,
the degree of every node must be necessarily even.

The seven bridges of Könisberg cannot be traversed exactly once in a single
path. In fact the problem can be mapped to the problem of finding an Eule-
rian path in a networks with nodes of odd degrees, as the Figure 2.15 shows.
Another fascinating combinatorial problem on network is relating to finding the
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Figure 2.7: The city of Königsberg is shown on the left panel . The problem
of the seven bridges of Könisberg (the Eulerian path problem) was solved by L.
Euler in 1736 by mapping the mapping the problem in to the problem of finding
an Eulerian path in the network shown in the right panel.

Hamiltonian cycle in a network. Assume that you have to organise a diplomatic
dinner around a round table. Your goal is to make the dinner a success, so you
want to place close to each other only diplomats of countries with friendly and
peaceful relations. If you consider the network of friendly and peaceful rela-
tion, this problem reduces to the problem of finding a Hamiltonian cycle in this
network. In fact the Hamiltonian cycle of a network is defined as follows.

Definition 30. A Hamiltonian cycle is a cyclic path that visit each node of a
network exactly once.

Determining weather such paths exist in a given network is the Hamiltonian
path problem, which is hard combinatorial problem (NP-complete).

2.5 Distances, Mean Average distance and Di-
ameter of a network (E)

The concept of distance in a network does not depend on an embedding space,
but only on the shortest length of the paths connecting them. For example,
the shortest distance between the two small cities of Trieste in the North-Est of
Italy and of Baden-Baden in Germany in the airport network is larger than the
distance between the city of Trieste with the city of London, although Trieste
and Baden-Baden are closer in space. Many complex networks are characterized
by small shortest distance between the nodes. For example in social networks
any two people in the Earth are separated by only few shaken hands, or in the
World-Wide-Web any pair of webpages are only few clicks apart despite these
networks contain more than 108 nodes. Here we introduce the terms necessary
to quantify these important properties of complex networks.
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2.5.1 Shortest distance between two points

Given two nodes i and j of the network first we define their shortest path and
their shortest distance.

Definition 31. A shortest path between node j and node i is a path (directed
path in the case of a directed network) of minimum length. The shortest distance
dij between node j and node i is the length of any shortest path between node j
and node i.

If node there is no path between node j and node i we set dij =∞.

2.5.2 Average distance and Diameter of a Network

The average distance of a network and its diameter are global quantities that
characterize important properties of the distances in the network. Let us limit
our discussion to connected networks, i.e. network for which there is a path
from every node of the network to any other node.

Definition 32. The average shortest distance ` of a connected network is the
average of the shortest distances between any two distinct nodes of the network.
Therefore, in a connected network we have

` =
1

N(N − 1)

N∑
i=1

∑
j=1,N |j 6=i

dij . (2.23)

Definition 33. The diameter D of a connected network is the maximum of the
shortest distances between any two nodes of the network. Therefore we have

D = max
i,j 6=i

dij . (2.24)

From the definitions of the average shortest distance and of the diameter of
a connected network, it clearly follows that

D ≥ `, (2.25)

i.e. the diameter of a connected network is never smaller than the average
distance of the network.
As a useful reference point we can consider lattices, that are regular symmetric
structures widely studied in physics or whenever it is necessary to approximate a
continuous Euclidean space with a network. In Figure 2.8 we show two examples
of lattices of dimension respectively one and two. For the 1d chain, the diameter
D = N−1, for the 2d finite lattices of N = l× l nodes (in the figure we have the
example of l = 6 nodes) the diameter is given by D = 2(l − 1) = 2(

√
N − 1) '

2N1/2 where the last relation is valid for N � 1. This result can be easily
generalized for large lattices N � 1 of dimension d giving

D ' N1/d. (2.26)
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Instead, as we will see in the following chapters ,many complex networks are
small world, i.e. they are characterized by a diameter D scaling with the number
of nodes as

D ' O(lnN), (2.27)

or

D ' o(lnN) (2.28)

i.e.

lim
N→∞

D

lnN
= const. (2.29)

This property of complex networks is called the small world distance property.
Example of networks that have this property are ubiquitous, from the Inter-
net and the World-Wide-Web to the social networks or the neural network of
c.elegans.

	
  	
  	
  1d	
  Chain	
   	
   	
   	
   	
   2d	
  La+ce	
  

Figure 2.8: A 1d lattice (a chain) and a 2d lattice.

2.6 Network subgraphs, Loops, Cliques

2.6.1 Network subgraphs (E)

Given a network G = (V,E) formed by the set of nodes V different from the
null set and by the set of edges E, it is always possible to define a subgraph.

Definition 34. A subgraph H = (V ′, E′) of a network G = (V,E) is formed by
a set of node V ′ ∈ V and by a set of links E′ such that E′ ∈ E and that all the
link in E′ are incident only to nodes included in V ′.
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Sometimes in useful to consider the subgraph composed by all the links
incident to a subset V ′ of the set of nodes V of the original network. In this
case we say that the subgraph is induced by the subset of vertices V ′. Therefore
we have the following definition.

Definition 35. A subgraph G′ = (V ′, E′) of the network G = (V,E) is induced
by the nodes in the set V ′ ∈ V if and only if the set E′ of its links includes all
the links of G incident to the nodes in V ′.

In many situations it is interesting to consider special types of subgraphs such
as loops, cliques, and k-cores. In Figure 2.9 we present a networks including
cliques and loops of various size.

1
2

3

4

56

7

8

Figure 2.9: A network of N = 8 nodes including loops and cliques of various
sizes.

2.6.2 Loops (E)

Definition 36. A undirected loop is a subgraph H = (V ′, E′) of an undirected
network such that every node i ∈ V ′ has degree 2 in the subgraph and such that
every node can be reached by all the other nodes. A directed loop is a subgraph
H = (V ′, E′) of a directed network such that every node i ∈ V ′ has a in-degree
1 and a out-degree 1 and such that every node can be reached by all the other
nodes.

In a loop the number of nodes |V ′| is equal to the number of links |E′|, we
call this number the length of the loop n.

Theorem 2.6.1. The number of undirected loops of length 3 in an undirected
network is given by

Ln =
1

6
TrA3. (2.30)

The number of directed loops of length 3 in a directed network is given by

Ln =
1

3
TrA3. (2.31)
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Proof. For every undirected loop of length 3 there are 6 distinct undirected
cyclic path of length 3 in the network. In fact we can consider the cyclic paths
departing from each of the 3 nodes of the loop and going either clockwise or
counter-clockwise. Therefore the number of undirected loops of length 3 is given
by the number of cyclic paths of length 3 divided by 6 = 3× 2. The number of
undirected cyclic paths is given by Eq.(2.22), i.e. TrAn. Therefore, it follows
(2.30).
For every directed loop of length 3 there are three distinct cyclic paths of length
3 in the network. In fact we can consider all the cyclic paths departing from
each of the 3 nodes of the loop and going in the direction of the directed loop.
Therefore the number of loops of length 3 is given by the number of cyclic
paths of length 3 divided by 3. The number of directed cyclic paths is given by
Eq.(2.22), i.e. TrAn. Therefore, it follows (2.31).

In Figure 2.9 there are 12 loops of size 3, 15 loops of size 4 and 12 loops of
size 5.

2.6.3 Cliques (E)

Definition 37. A clique is a subgraph G′ = (V ′, E′) of an undirected network
such that every node i ∈ V ′ with cardinality |V ′| = n has degree n− 1, i.e. such
that every node is connected to every other node. The number of nodes in the
clique n is also called the clique size.

A clique of size n is also called Kn. An undirected loop of length 3 (a
triangle) is a clique of size 3. In the Figure 2.9 there are 12 cliques of size 3, 5
cliques of size 4 and 1 clique of size 5.

2.6.4 k-Core (NE)

Some networks have regions more dense than others. For example this is the
case of the Internet described at the Autonomous System Level where few Au-
tonomous Systems are linked by a relative large number of links. In order to
characterize these dense regions of the network, it is useful to define the k-cores.

Definition 38. A k-core of an undirected network is the subgraph induced by a
set nodes whose degree within the subgraph is at least k and such that from each
node it is possible to reach any other node of the subgraph by following a path
(i.e. the subgraph is connected).A k-core has also the property that no additional
node can be added to it whose degree is at least k within the subgraph.

The k-cores of a network can be obtained by iteratively removing all the
nodes of the network of degree less than k.
Every finite network has a maximal k for the k−cores with at least one element.

In Figure 2.10 the k-core structure of the Internet at the Autonomous System
Level is shown. The average degree of this network is small, but the maximal



36CHAPTER 2. G. BIANCONI: INTRODUCTION TO NETWORK THEORY

k of the k-cores reaches value 39, indicating that in the network there are very
densely connected regions.

Figure 2.10: The k-core structure of the Internet at the Autonomous System
Level. Data from DIMES. Figure produced with the LaNetVi visualization tool
of networks, the k-cores are visualized with different color code and the node
sizes indicates the degrees of the nodes.

2.7 Connected Components (E)

2.7.1 Connected components in undirected networks

Definition 39. An undirected network is connected if there is a path from every
node of the network to any other node. A undirected network is disconnected if
it is not connected.

A network that is not connected contains several connected components.

Definition 40. A connected component of a unidirectednetwork is a subgraph
of the network induced by a set of nodes connected by each other by undirected
path. Additionally, a connected component has maximum size, i.e. there is no
node in the network that is connected to it by undirected paths but does not
belong to it.

For example the network in Figure 2.11 contains two connected components
induced by the nodes {1, 2, 3} and the nodes {4, 5, 6, 7, 8}.

2.7.2 Connected components in directed networks

Given a directed network we can either neglect the direction of the links or we
can take into account the direction of the links. Therefore we can consider differ-
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Figure 2.11: A disconnected network of N = 8 nodes and two connected
components.

ent definitions of connected components called the weakly connected components
and the strongly connected components of the directed network.

Definition 41. The weakly connected components of a directed network are the
connected components of the undirected network that can be constructed from the
directed network by neglecting the direction of the links.

Therefore two nodes are in the same weakly connected component if there
is at least one path connecting them, where paths are allowed to go either way
along the link.

Definition 42. A strongly connected component of a directed network is the
subgraph induced by a set of nodes V ′ with cardinality |V ′| ≥ 2 such that ev-
ery pair of nodes in the component is connected by at least one path going in
each direction and such that no other node of the network can be added to V ′

preserving this property.

Not all the nodes of a directed network are in a strongly connected compo-
nent in general. In fact there are nodes in the weakly component of a directed
network that can be reached from the other nodes following directed links but
from which it is impossible to reach the other nodes or vice versa. For this
reason is useful also to define the in-component (out-component) of a directed
network relative to a given strongly connected component of the network.

Definition 43. The in-component relative to a given strongly connected com-
ponent is the set of nodes that are not reachable from the nodes of the strongly
connected component by directed path, but from which there is a direct path to
the nodes in the strongly connected component. The out-component relative to a
given strongly connected component is the set of nodes that can be reached from
the nodes of the strongly connected component by directed paths but from which
there is no directed path to the nodes in the strongly connected components.
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Figure 2.12: A disconnected network of N = 9. This network has
two weakly connected components,including respectively the nodes 1, 2, 3 and
4, 5, 6, 7, 8, 9.Moreover this network contains two strongly connected components
highlighted in cyan. The first strongly connected components includes the nodes
1, 2, 3; the second connected component includes the nodes 4, 5, 6. The in-
components of the second strongly connected component is highlighted in green
and includes nodes 7, 8 while the out-component is highlighted in pink and
contain only node 9.

In Figure 2.12 we highlighted in green the in-component relative to the
strongly connected component formed by nodes {4, 5, 6} and by pink its out-
component.
In the case in which there is only one strongly connected component in the net-
work we will refer to the in-component (out-component) relative to the strongly
connected component as the in-component (out-component) of the directed net-
work.

2.7.3 The Bow-Tie structure of the World-Wide-Web

The World-Wide-Web is a wonderful example of self-organized network, that
over few decades has become central in today communication and diffusion of
ideas and knowledge. The first maps of the World-Wide-Web (WWW) struc-
ture appear in the literature only around the year 2000, despite the fact that at
that time the network was already extensively developed. In particular in the
paper of A. Broder et al. Graph structure in the web,published in the Proceeding
Proceedings of the 9th international World Wide Web conference on Computer
networks : the international journal of computer and telecommunications net-
working, 309-320 (2000), for the first time the structure of the components of
the WWW have been investigated. It was found that the WWW contains one
major strongly connected component (SCC) that has one big in-component (IN)
and one big out-component (OUT). Then there are TENDRILS departing from
the in or the out components and tubes connecting directly the in-component
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with the out-component of the SCC. Finally there are small disconnected com-
ponents (DISC). A schematic view of this “bow-tie” structure is represented
in Figure 2.13. The sizes of the different regions of the WWW as reported in
the cited paper are: SCC 56, 463, 993, IN 43, 343, 168, OUT 43, 166, 185; DISC
16, 777, 756 Total 203, 549, 046.

Figure 2.13: The bow-tie structure of the World-Wide-Web as described in the
paper A. Broder et al. Graph structure in the web,Proceeding Proceedings of
the 9th international World Wide Web conference on Computer networks : the
international journal of computer and telecommunications networking, 309-320
(2000).

2.8 Special types of networks (E)

2.8.1 Trees and Forests

Definition 44. A tree is a connected network without loops.
A tree in which a single node is connected to all remaining nodes is called a
star network. A forest is network formed by several trees forming the different
connected components of the forest.

2.8.2 Complete network

Definition 45. A complete network of N nodes is a network in which every
pair of nodes are connected by an undirected link.
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Figure 2.14: A tree of N = 13 nodes.
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Figure 2.15: A star network of N = 10 nodes. Node 1 is the central node of the
network.
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Figure 2.16: A forest of N = 16 nodes and 3 connected components.

1

2

3

4

5

Figure 2.17: A complete network of N = 5 nodes.
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Chapter 3

Centrality measures

3.1 Introduction (E)

Ranking algorithms are becoming increasingly important in our society. The
traditional alphabetic order of the Encyclopaedia is nowadays substituted in
everyday life by websearch algorithm that rank webpages (i.e. the nodes of the
World-Wide-Web) in order of decreasing relevance to the query. In the context
of network theory, in may cases we are interested to find the most central nodes
of a given network. Centrality of a node might reflect the importance of the node
in keeping a network connected, in decreasing the shortest distance between the
nodes, or it can just be a property of the node like its degree. In the nowadays
most successful centrality algorithm, the PageRank algorithm, used by Google
for ranking the results of a query, a node is more central if many central nodes
point to it. The works related to centrality of the nodes in a network are very
often related to the sociological literature where the problem of find “important”
and influential nodes was first introduced. Nevertheless the centrality of nodes
is very important also in biology where for example a gene like the p53 gene
is an essential node for most of cellular functions and its mutations are related
with the onset of cancer.

3.2 Degree centrality (E)

Nodes with high degree, called hubs nodes usually play an important role in the
network. Therefore in undirected network the degree ki =

∑
j Aij of node i is

considered often as a good proxy of its centrality. In directed networks, it is
possible to consider both the in-degree kini =

∑
j Aij of a node or the out-degree

kouti =
∑
j Aji of a node as centrality measures.

43
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3.3 Eigenvector centrality (E)

Consider a undirected network or a strongly connected network, then it is possi-
ble to refine the measure of centrality by considering the eigenvector centrality.
In the eigenvector centrality a node is more important is already important
nodes point to it.

Definition 46. The eigenvector centrality x can be obtained starting from an

initial guess of the centrality of the nodes x
(0)
i and by considering the the fol-

lowing recursive process:

x
(n)
i =

∑
j

Aijx
(n−1)
j . (3.1)

Whereas the limit limn→∞
∑
j x

(n)
j exits the following procedure defines the eigen-

vector centrality. If limn→∞
∑
j x

(n)
j > 0 the eigenvector centrality xi of a node

i is found by performing the limit

xi = lim
n→∞

x
(n)
i∑
j x

(n)
j

, (3.2)

if instead limn→∞
∑
j x

(n)
j = 0 then all the nodes have zero eigenvector central-

ity, i.e.
x = 0.

A typical initial guess is

x
(0)
i =

1

N

for all i ∈ {1, 2, . . . , N}. However if the choice of this initial guess does not lead

to a well defined limn→∞
∑
j x

(n)
j another choice of the initial guess should be

made.

Proposition 2. In an undirected network or in a network with at least one
strongly connected component, the eigenvector centrality x of a network is pro-
portional (x ∝ v1)to the leading eigenvector v1 satisfying,

λ1v
1 = Av1 (3.3)

where the real eigenvalue λ1 is the Perron-Frobenious eigenvalue of the adjacency
matrix A. This implies that λ1 is the only real eigenvalue of A with λ1 ≥ |λi|
where λi with i = 1, 2, . . . , N are all the eigenvalues of the adjacency matrix
of the network. For the Perron-Frobenious theorem the eigenvector x has all
non-negative elements xi ≥ 0∀i = 1, 2 . . . , N .

Proof. The recursive process defined in (3.1) implies that x
(n)
i is given by

x(n) = Anx(0) (3.4)
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where x(0) = 1/N and 1 is the column vector of elements 1j = 1. Expressing the
vector 1/N into the base of right eigenvectors of the matrix A, {vµ}µ=1,2...,N

where each right eigenvector is associated with the eigenvalues λµ, we obtain:

1

N
1 =

N∑
µ=1

cµvµ. (3.5)

Therefore x(n) if given by

x(n) =

N∑
µ=1

cµAnvµ =

N∑
µ=1

cµ(λµ)nvµ. (3.6)

Finally since all the eigenvalues λµ with µ 6= 1 satisfy |λµ| ≤ |λ1| and since the
eigenvector associated with the eigenvalue λ1 is the only one with non-negative
elements,it follows that,as long as λ1 > 0

lim
n→∞

x(n)∑
i x

(n)
i

=
v1∑
i(v

1)i
. (3.7)

Therefore the eigenvector centrality x = c′v1 where c′ is a normalization con-
stant.

Any connected undirected network has an irreducible adjacency matrix.
Therefore for the Ferron-Frobenious theorem in a connected undirected net-
work every node i has a a positive eigenvector centrality xi > 0. A directed
network which is strongly connected has also an irreducible matrix, therefore
also in this case every node i of the network has a positive eigenvector centrality
xi > 0. Nevertheless, if the directed network when there is no strong component
in the network then λ1 = 0 and therefore x = 0. When, instead there is at least
one non vanishing strongly connected component in the network x 6= 0, but not
all the nodes have positive centrality.

Proposition 3. Given a directed network all the nodes of the in-component of
the network have centrality xi = 0.

Proof. Consider the iterative procedure for constructing the eigenvector cen-

trality starting form the initial guess x
(0)
i = 1/N by calculating the vector x(n)

given by

x
(n)
i =

∑
j

Aijx
(n−1)
j (3.8)

at every step n ≥ 1 of the iteration. If we start from the leaves nodes i of
the in-component that have in-degree zero, all these nodes have clearly zero

centrality x
(n)
i = 0, at any iteration n ≥ 1. Moreover all the nodes i of the

in-components that are pointed only by the leaves nodes, must also necessarily
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Figure 3.1: The pathology of the eigenvector centrality. In a directed network
in which there is no strongly connected component, as in the example provided
in this figure, all the nodes have zero centrality.

have zero centrality x
(n)
i = 0 for all n ≥ 2. By assuming that all the nodes i

in the in-component that are distant at maximum d from the leaves nodes have

zero centrality x
(n)
i = 0 at any iteration n ≥ d, it follows that all the nodes i

in the in components that are distant at maximum d+ 1 from the leaves nodes

have zero centrality x
(n)
i = 0 as well for any n ≥ d+ 1, in fact at any iteration

n ≥ d+ 1 they are only pointed by nodes with zero eigenvector centrality.

This property of the eigenvector centrality defined on directed network is
usually an undesired feature of this centrality definition. Therefore while in so-
cial network studies the eigenvector centrality is quite popular to analyse undi-
rected network datasets, it use is limited to analyse directed network datasets.

3.4 Katz Centrality (E)

In order to solve the undesired property of the eigenvector centrality , i.e. the
vanishing of the eigenvector centrality for the nodes in the in-component of
directed network, the Katz centrality has been proposed. The Katz centrality
assign to each node a small centrality value β just for being a node of the
network, then the centrality of the node increases if many important nodes
point to it.

Definition 47. The Katz centrality x satisfies the following equation

xi = α

N∑
j=1

Aijxj + β (3.9)

where β > 0, α ∈ (0, 1/λ1) where λ1 is the Perron-Frobenious eigenvalue of the
adjacency matrix A.

Using the matrix formalism we can write Eq. (3.9) as

x = αAx + β1, (3.10)
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where 1 indicates the column vector such that 1i = 1 ∀i = 1, 2, . . . , N . By per-
forming simple algebraic calculation it is possible to express the Katz centrality
x as

x = (I− αA)
−1
β1 = β

∞∑
n=0

(αA)
n

1. (3.11)

The matrix (I− αA)
−1

diverges for det(I− αA) = 0. Since we have I− αA =

α(α−1I − A) we have that (I− αA)
−1

diverges when α is the inverse of an
eigenvalue of the adjacency matrix A. Therefore, in order to ensure the con-
vergence of

(
I− αA−1

)
and a well defined Katz centrality we must consider for

the parameter α the following range: α ∈ (0, 1/λ1).

3.5 PageRank Centrality (E)

The PageRank centrality is the main algorithm beyond the Google search engine,
and has played a key role in determining the success of Google. The PageRank
centrality is based on the same idea as the Katz centrality, i.e. if many important
nodes j point to node i, node i increases its centrality. Nevertheless in the World-
Wide-Web we have sometime very important webpages with many links, and
in general the downstream nodes of these links are not more important than
the important nodes from which the link is coming. In order to account for
this fact, in the PageRank the downstream nodes only acquire a fraction of the
centrality of the very central node that is pointing to them. Therefore we have
the following definition

Definition 48. The PageRank centrality x satisfies the following equation

xi = α

N∑
j=1

Aij
1

κoutj

xj + β (3.12)

where κoutj = max(koutj , 1), β > 0 and α ∈ (1, 1/λ′1) where λ′1 is the Perron-

Frobenious eigenvalue of the matrix AD−1 with D given by the diagonal matrix
of elements Dii = κouti = max(kouti , 1).

In the matrix formalism we obtain the expression

x = αAD−1x + β1 (3.13)

where 1 is the column vector with elements 1i = 1 ∀i = 1, 2 . . . , N . By perform-
ing simple algebraic calculation it is possible to express the Katz centrality x
as

x =
(
I− αAD−1

)−1
β1 = β

∞∑
n=0

(
αAD−1

)n
1. (3.14)
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The condition α < 1/λ′1 guarantees that the PageRank centrality is well defined
for every node of the network. In undirected network λ′1 = 1. Therefore α ∈
(0, 1), in directed network λ′1 is order one. In the original PageRank algorithm
of Google α ' 0.85. Let us now show that indeed λ′1 = 1 for a undirected
network.

Theorem 3.5.1. In an undirected network the maximal eigenvalue λ′1 of the
matrix AD−1 is equal to one, i.e. λ′1 = 1.

Proof. The matrix AD−1 is irreducible and with non negative elements, there-
fore the Perron-Frobenious theorem applies. In this case the leading eigenvector
is the only eigenvector with non vanishing elements. The us show that the vec-
tor x with elements xi = ki ≥ 0 is the eigenvector of AD−1 associated with the
eigenvalue λ′1 = 1. In fact if κj = max(1, kj) we have, for the definition of the
degree of a node ∑

j

Aij
1

κj
kj = ki = λ′1ki, (3.15)

with λ′1 = 1. It follows then that x is the leading eigenvector and that λ′1 = 1
is the leading eigenvalue.

3.6 Example of calculation of the centrality of
the nodes

Numerically the calculation of the centrality measures of the nodes are evaluated
within a specific error by considering the following approximations

xeig = CAn1

xKatz = β

n∑
n′=0

(αA)
n′

1

= β[I + αA + α2A2 + . . . αnAn]1

xPageRank = β

n∑
n′=0

(
αAD−1

)n′
1

= β
[
I + αAD−1 + α2(AD−1)2 + . . . αn(AD−1)n

]
1.(3.16)

In specific exercises we might aim at calculating exactly the centralities of the
nodes. Two examples are given below.

3.6.1 First example

Let us consider the directed network with adjacency matrix

A =

 0 1 1
0 0 1
0 0 0

 .



3.6. EXAMPLE OF CALCULATION OF THE CENTRALITY OF THE NODES49

Eigenvector centrality (E)

The network described by the adjacency matrix A given by Eq. (3.17), is a
directed network without any strongly connected components, therefore xi = 0

∀i = 1, 2, 3. To see how the iterative procedure for calculation x
(n)
i work in

this case we start with the “democratic ansatz” x
(0)
i = 1/3 ∀i = 1, 2, 3. Using

x(n) = Anx(0), we obtain

x(1) =

 0 1 1
0 0 1
0 0 0

 1
3
1
3
1
3

 =

 2
3
1
3
0


x(2) =

 0 1 1
0 0 1
0 0 0

 2
3
1
3
0

 =

 1
3
0
0


x(3) =

 0 1 1
0 0 1
0 0 0

 1
3
0
0

 =

 0
0
0

 .

Therefore x(n) = 0 for n ≥ 3.

Katz centrality

The Katz centrality x can be calculated by

x = β (I− αA)
−1

1 = β

∞∑
n=0

αnAn1. (3.17)

Now we have by definition A0 = I, moreover A2 and A3 are given by

A2 =

 0 0 1
0 0 0
0 0 0

 . A3 =

 0 0 0
0 0 0
0 0 0

 ,

and therefore An = 0 for n ≥ 3. Using the Eq. (3.17), we have therefore

x = β

 1 0 0
0 1 0
0 0 1

+ α

 0 1 1
0 0 1
0 0 0

+ α2

 0 0 1
0 0 0
0 0 0

 .

 1
1
1


= β

 1 + 2α+ α2

1 + α
1

 .

PageRank Centrality (E)

The PageRank centrality x can be calculated by

x = β
(
I− αAD−1

)−1
1 = β

∞∑
n=0

αn
(
AD−1

)n
1. (3.18)
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Figure 3.2: The graphical representation of the network with adjacency matrix
A given by Eq. (3.17).

with Dii = max(1, kouti ). Therefore we have

D =

 1 0 0
0 1 0
0 0 2

 . D−1 =

 1 0 0
0 1 0
0 0 1

2

 .

Therefore the matrices
(
AD−1

)n
are given by

AD−1 =

 0 1 1
0 0 1
0 0 0

 1 0 0
0 1 0
0 0 1

2

 =

 0 1 1
2

0 0 1
2

0 0 0

 ,

(AD−1)2 =

 0 1 1
2

0 0 1
2

0 0 0

 0 1 1
2

0 0 1
2

0 0 0

 =

 0 0 1
2

0 0 0
0 0 0

 ,

and finally
(
AD−1

)n
= 0 for n ≥ 3. Therefore the PageRank centrality is given

by

x = β
[
I + αAD−1 + α2

(
AD−1

)2]
1

= β

 1 0 0
0 1 0
0 0 1

+ α

 0 1 1
2

0 0 1
2

0 0 0

+ α2

 0 0 1
2

0 0 0
0 0 0


= β

 1 + 3
2α+ 1

2α
2

1 + 1
2α

1

 .
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12 3

Figure 3.3: The graphical representation of the network with adjacency matrix
A given by Eq. (3.17).

3.6.2 Second example (NE)

Let us consider the directed network with adjacency matrix

A =

 0 1 0
1 0 1
0 0 0

 .

This network is shown in Figure 3.3. It has a strongly connected component
induced by the nodes {1, 2}. In similar cases, when the network includes a very
large number of nodes N , we might still use the expansion given by Eq. (3.16)
to calculate numerically the eigenvector, Katz and the PageRank centralities,
but for small networks it is possible to work directly with the eigenvectors and
the inverse of the matrices finding exact results as shown in this case.

Eigenvector centrality (NE)

The network described by the adjacency matrix A given by Eq. (3.19), is a
directed network has a strongly connected component, induced by nodes 1, 2.
Instead node 3 is in the in-component , therefore we expect x3 = 0. To see
this let us find the eigenvector v1 corresponding to the largest eigenvalue of the
matrix.

Let us first evaluate the largest eigenvalue λ1. To this end, let us find the
spectrum of the matrix by solving the eigenvalue problem

det(A− λI) = 0. (3.19)

which reads

det(A− λI) =

∣∣∣∣∣∣
−λ 1 0
1 −λ 1
0 0 −λ

∣∣∣∣∣∣ . = −λ(λ2 − 1) = 0.

This equation can be solved giving the eigenvalues λ1 = 1, λ2 = 0, λ3 = −1 with
λ1 > λ2 > λ3. Therefore the leading eigenvalue is λ1 = 1. The corresponding
eigenvector v1 can be found by solving the equation

Av1 = λ1v1 (3.20)

which reads
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A =

 0 1 0
1 0 1
0 0 0

 x1
x2
x3

 = 1

 x1
x2
x3


where

v1 =

 x1
x2
x3

 . (3.21)

Eq. (3.21) has solution

v1 = C

 1
1
0

 (3.22)

where C is a normalization constant fixed by the condition
∑
i xi = 1. We have

therefore C = 1/2 and

v1 =
1

2

 1
1
0

 . (3.23)

As expected we have x3 = 0.

Katz centrality

The Katz centrality x can be calculated by

x = β (I− αA)
−1

1 = β

∞∑
n=0

αnAn1. (3.24)

Now, it is convenient for small networks with a strongly connected component
to calculate directly β (I− αA)

−1
1 with our using the power expansion. Let us

first calculate I− αA. This matrix is given by

I− αA =

 1 −α 0
−α 1 −α
0 0 1


The determinant of the matrix is given by

det(I− αA) = 1− α2. (3.25)

The the matrix of cofactors is given by

C =

 1 α 0
α 1 0
α2 α 1− α2

 .
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The inverse is given by

det(I− αA)−1 =
1

1− α2

 1 α α2

α 1 α
0 0 1− α2

 .

Therefore the Katz centrality x is given by

x = β (I− αA)
−1

1 (3.26)

i.e. x1
x2
x3

 =
1

1− α2

 1 α α2

α 1 α
0 0 1− α2

 1
1
1

 =
β

1− α2

 1 + α+ α2

1 + 2α
1− α2

 .

PageRank Centrality (NE)

The PageRank centrality x can be calculated by

x = β
(
I− αAD−1

)−1
1 = β

∞∑
n=0

αn
(
AD−1

)n
1. (3.27)

with Dii = max(1, kouti ). Again here for a small network with a strongly con-
nected component we can solve exactly for the PageRank centrality by inverting
the matrix I− αAD−1. Let us calculate the matrix D. This is given by

D =

 1 0 0
0 1 0
0 0 1


Therefore in this case the PageRank centrality is the same as the Katz

centrality and is given by

x =
β

1− α2

 1 + α+ α2

1 + 2α
1− α2

 . (3.28)

3.7 Closeness Centrality and Efficiency (E)

The main idea beyond the definition of closeness centrality is to rank the im-
portance of a node depending on its distance to the other nodes of the network.
Therefore the closeness centrality is smaller for nodes that have larger average
distance to the other nodes of the network.

Definition 49. The Closeness Centrality Cli of a node i in a undirected net-
work is given by

Cli =
N − 1∑
j dij

=
1

1
N−1

∑
j dij

=
1

`i
(3.29)
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where dij is the shortest distance between node i and node j, and `i is the
averaged shortest distance between node i and the other nodes of the network.
The normalization to N − 1 takes into account that we have always dii = 0

The closeness centrality has the following properties:

• It has small dynamic range.
Since most networks are characterized by the “ small world” properties and
have typically small average distances, the values of the closeness centrality
spans a relatively small dynamic range in any small world network.

• It is zeros if the network is disconnected.
If the network is disconnected for every node i there will be a node j
such that dij = ∞. In this case the closeness centrality is zero. To avoid
this problem, the closeness centrality of disconnected network is calculated
for every node i only considering the nodes j belonging to the connected
component C(i) of the network including node i, i.e.

Cli =
|C(i)− 1|∑
j∈C(i) dij

. (3.30)

An alternative definition of the closeness centrality is also called the Efficiency
defined as in the following

Definition 50. The efficiency Ei of a node i in a undirected network is given
by

Ei =
1

N − 1

∑
j 6=i

1

dij
. (3.31)

The efficiency, is non vanishing also for disconnected networks, but has al-
ways numerical values spanning a small dynamic range in small world networks.
Using this definition one can define the global efficiency E of a network defined
as in the following

Definition 51. The global efficiency E of a network is the averaged of the
efficiencies Ei of its nodes, i.e.

E =
1

N

N∑
i=1

Ei =
1

N(N − 1)

∑
i,j|i 6=j

1

dij
. (3.32)

3.8 Betweenness Centrality (E)

The betweenness centrality of a node i is very large if node i lies on many shortest
paths between the other nodes of the network.
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1

2

3 4

5
86

7

9

10

Figure 3.4: Node 8 is a node with small degree k8 = 2 but large betweenness
centrality bi = 102−52−42 = 59because it connects two groups of nodes formed
respectively by 5 and 4 nodes that are otherwise disconnected.

Definition 52. The betweenness centrality bi of node i in a network is given
by

bi =
∑
r,s

nirs
grs

(3.33)

where nirs are the number of shortest paths between node r and node s that pass
through node i, and grs are the total number of shortest paths between node r
and node s.

The betweenness centrality is not in general related with the degree of a
node, in fact a low degree node connecting two otherwise disconnected regions
of the network has high betweenness centrality (See Figure 3.4). Moreover, the
betweenness centrality can acquire a wide range of values also if we consider
only connected and undirected networks.
Given a network of N nodes, the maximal value of the betweenness is obtained
for the central node of a star network with one central node and N − 1 leaves.
For any pair of nodes r, s since the star network is a tree we have a single shortest
path linking the two nodes, i.e. grs = 1. Moreover all the paths joining nodes
r 6= s pass through the central node. Therefore only the paths starting from
nodes r different from the central node and arriving at r do not pass through
the central node. Therefore the betweenness centrality of the central node i of
such star network is given by

bi = N2 − (N − 1) = N2 −N + 1. (3.34)

The minimal betweenness of a node in a connected and undirected network of
N nodes is given by the betweenness centrality of a leaf node. The leaf node i
lies only on shortest paths that start or end with itself. These paths are given
by (N − 1) +N = 2N − 1 because there are N − 1 shortest paths starting from
other nodes and ending in i and there are N shortest paths starting from node
i. Therefore the ratio between the largest and lowest betweenness centrality in
an undirected and connected network is given by

N2 −N + 1

2N − 1
' 1

2
N (3.35)
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where we have approximated the above ration in the limit N � 1 of a large
network. It follows that the betweenness centrality of a undirected connected
network can spam a wide range of values.

1

2

3

4

5

6

7

8

9

10

104

9

2

87

3

6 5

1

Figure 3.5: (left panel) A star network of N = 10 nodes, the node 1 is linked to
all the others N−1 = 9 nodes and has betweenness centrality b1 = N2−N+1 =
91. (right panel) Node 1 in the network on the right is a leaf node, i.e. a node
of degree 1, therefore b1 = (2N − 1) = 19.

3.9 Review of Algebra

3.9.1 Perron-Frobenious Theorem (E)

Here we will state the Perron-Frobenious Theorem, which is very important to
guarantee the desired properties for the eigenvector centrality. Before stating
the Perron-Frobenious Theorem valid for a square matrix A, with non-negative
elements Aij ≥ 0, we define the irreducible matrices.

Definition 53. An square matrix with non negative matrix elements Aij > 0 is
called irreducible if, for every pair of indices (i, j), there is a value of n = n(i, j)
such that [An]ij > 0.

If A is an adjacency matrix and is irreducible, the underlying network must
be formed by a unique strongly connected component. In fact the condition[
AN

]
ij
> 0, implies that there is at least one path of length n going from node

j to node i. It follows that if the adjacency matrix A of a network is irreducible,
it must be possible from each node j of the network to reach any node i of the
network in a finite number of steps, i.e. the network is formed by a unique
strongly connected component.

Theorem 3.9.1. Let A be a N ×N irreducible matrix.
Then the Perron-Frobenious theorem states that:

• A has a real positive eigenvalue λ1 such that all other eigenvalues λi with
i = 2, . . . , N satisfy

λ1 ≥ |λi|. (3.36)
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• The eigenvalue λ1 has algebraic and geometric multiplicity equal to one,
and has an left eigenvector x with all positive elements, i.e. xi > 0 ∀i =
1, 2 . . . , N and a left eigenvector v with all positive elements, i.e. vi =
0 ∀i = 1, 2 . . . , N .

• Any non-negative right eigenvector is a multiplex of x, any non-negative
left eigenvector is a multiple of v.

Moreover, if A is the adjacency matrix of a directed network with a single
strongly connected component, we have that

• A has a real positive eigenvalue λ1 such that all other eigenvalues λi with
i = 2, 3, . . . , N satisfy

λ1 ≥ |λi|. (3.37)

• The eigenvalue λ1 has algebraic and geometric multiplicity equal to one,
and has an left eigenvector x with non-negative elements, with xi > 0 is
node i belongs to the strongly connected component of the network, or
the out-components of the network, and xi = 0 if node i belongs to the
in-component of the strongly connected component of the network.

3.9.2 Introduction to Matrix Functions (E)

Let f(z) be a complex valued function of z ∈ C.
Let A be a N ×N complex valued matrix.
If f(z) is analytic in the disk |z| < R, it can be represented as a convergent
Taylor series

f(z) =

∞∑
n=0

cnz
n for |z| < R. (3.38)

A formal substitution of the N × N matrix into this series yields the N × N
matrix f(A) given by

f(A) =

∞∑
n=0

cnAn (3.39)

where A0 = I. We say that the series in Eq. (3.39) is convergent is all N2

scalar elements that make the matrix f(A) are convergent. For example we can
consider the following matrix functions

(I− αA)
−1

=

∞∑
n=0

αnAn

eαA =

∞∑
n=0

1

n!
αnAn. (3.40)
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3.9.3 Inverse of a Matrix (NE)

The inverse of a square N ×N invertible matrix M, is a square N ×N matrix
indicated with M−1 that satisfies the equation

MM−1 = M−1M = I. (3.41)

It can be found by applying the formula

M−1 =
1

det M
CT (3.42)

where C is the matrix of cofactors and CT represents the transpose of the matrix
of cofactors. The matrix elements Cij of the cofactor matrix C are given by
the product of the sign (−1)i+j and the minor of the entry of the i-th row and
j-th column. Here the minor indicates the determinant of the square matrix
obtained from the matrix M by removing the i-th row and the j-th column.



Chapter 4

Random graphs

4.1 Introduction (E)

Many complex networks from the World-Wide-Web to the brain are intrinsically
stochastic. In fact we put a new link on our webpage with a certain probability,
using only partial information of the structure of the full network, and we do
not follow a global design principle. Similarly, the structure of brain networks
is not fully encoded in the genome, therefore stochastic effects play an essential
role in brain development.

But are complex networks completely random?
The answer to this question is no, most complex networks are not completely
random: they encode information in their structure and they follow complex
organization principles related to their robustness and their efficiency. Net-
work theory is essentially needed for discovering these non-random properties
of complex networks.

In the their 1959 Erdös and Reńyi for the first time introduced probability
arguments in graph theory. It took therefore several hundred years for graph
theory (from Euler work in 1735 to Erdös and Rényi work of 1959) to take this
important step.

The importance of random graph theory for network theory is capital and
relies on the fact that random graph theory

• a) makes use of probabilistic arguments;

• b) characterizes the properties of networks in the limit of large network
sizes N � 1.

These two aspects of random graph theory are fundamental in network the-
ory, and are essential to characterize the evolution and the structure of not only
random networks but also more complex and realistic network models.

Random graphs are models of maximally random graphs that have several
important properties. In this chapter we will define random graphs, determine
the distribution of the number of links and the degree distribution, characterize

59
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the emergence of the giant component of the network as a function of the average
degree of the nodes. Finally we will characterize the local structure of random
graphs by finding the average number of important subgraphs such as loops or
cliques.

4.2 Random Graph Ensembles (E)

In random graph theory two different ensembles of random graphs are consid-
ered. Here to be consistent with our use of terminology we will call these graphs
random networks interchangeably.
A random graph ensemble is given when for every simple network G = (V,E)
of N = |V | nodes it is assigned a probability P (G).

The G(N,L) ensemble is formed by all the simple networks G(V,E) with
N = |V | labelled nodes and L = |E| links. In other words, all the networks
with N nodes and L links are taken with equal probability while all the other
networks have zero probability.
The total number of simple networks with N nodes and L links is given by

Z =

(
N(N − 1)/2

L

)
, therefore we have the following definition.

Definition 54. In the G(N,L) ensemble the probability of a simple network
G = (V,E) is given by

P (G) =

{
1
Z for |V | = Nand |E| = L
0 otherwise

,

where Z =

(
N(N − 1)/2

L

)
is the total number of networks of the ensemble

with non-zero probability.

The G(N, p) ensemble is formed by all the simple networks G(V,E) with
N = |V | labelled nodes where each pair of nodes is linked with probability p.

Definition 55. In the G(N, p) ensemble the probability of a simple network
G = (V,E) with total number of nodes N = |V | is given by

P (G) = pL(1− p)N(N−1)/2−L with |E| = L. (4.1)

Any network in this ensemble can be seen as a result of N(N−1)/2 independent
coin tossings, one for each link, with a probability of success, (i.e. drawing a
link) equal to p.

In the limit of large network limit N � 1, these the G(N,L) ensemble and

the G(N, p) ensemble where we take pN(N−1)
2 = L, are asymptotically equiva-

lent, and share most of their statistical properties. For this reason, here we will
restrict our attention to the G(N, p) ensemble,while leaving to the next chapters
a more detailed treatment of these and other generalized random ensembles.
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4.3 Distribution pL of the number of links L and
average number of links 〈L〉 of the G(N, p)
ensemble, (E)

While in the G(N,L) ensemble all the networks with non-zero probability have
the same number of links, in the G(N, p) ensemble different networks have dif-
ferent number of links. It is therefore important to calculate the distribution
pL of the number of links L and average number of links 〈L〉 of the random
networks in the G(N, p) ensemble.

Proposition 4. The probability pL that a network in the G(N, p) ensemble has
L links is a binomial distribution given by

pL =

(
N(N−1)

2
L

)
pL(1− p)N(N−1)/2−L, (4.2)

i.e. L ∼ B
(
N(N−1)

2 , p
)

.

Proof. The total number of links in the ensemble can take any value L between
zero and N(N − 1)/2. Moreover, since each link of a network in the G(N, p)
can be seen as a result of an independent coin flip,with probability of success
given by p, the total number of links in one network realization of the G(N, p)
ensemble can be seen as the result of N(N − 1)/2 of such coin flips. Given
a certain network in the G(N, p) ensemble the probability that it has L links
to a given set of nodes is pL(1 − p)N(N−1)/2−L. The number of possibilities of

choosing L links out of N(N − 1)/2 is given by

(
N(N − 1)/2

L

)
. Therefore it

follows that the probability pL is the binomial distribution given by Eq. (4.2),

i.e. L ∼ B
(
N(N−1)

2 , p
)

.

Proposition 5. The average number of links 〈L〉 of a network in the G(N, p)
ensemble is given by

〈L〉 =

N(N−1)/2∑
L=0

LpL = p
N(N − 1)

2
. (4.3)

Proof. We can calculate the average 〈L〉 over the distribution pL by using the
generating function of the PL distribution. The generating function G0(x) of
the distribution pL is given by

G0(x) =

N(N−1)/2∑
L=0

pLx
L

=

N(N−1)/2∑
L=0

(
N(N − 1)/2

L

)
pL(1− p)N(N−1)/2−LxL

= (1− p+ px)
N(N−1)/2

, (4.4)
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where we used the Newton binomial. Using the properties of the generating
functions we have

〈L〉 = G′0(x)|x=1 = p
N(N − 1)

2
(1− p+ px)

N(N−1)/2−1
∣∣∣
x=1

= p
N(N − 1)

2
. (4.5)

4.4 Degree distribution of the G(N, p) ensemble
(E)

In the G(N, p) ensemble, the nodes have in general different degree. Therefore
it is important to characterize the degree distribution of the network.

Proposition 6. The degree distribution P (k) of the G(N, p) ensemble is a
binomial distribution given by

P (k) =

(
N − 1
k

)
pk(1− p)N−1−k, (4.6)

i.e. k ∼ B(N − 1, p).

Proof. The degree of a node take any number k between zero and N −1. More-
over, since each link of a network in the G(N, p) can be seen as a result of an
independent coin flip probability of success given by p, the degree of each node
can be seen as the result of N − 1 of such coin flips. Given a certain node
the probability that it is linked to other k given nodes is pk(1− p)N−1−k. The

number of possibilities of choosing k nodes out of N −1 is given by

(
N − 1
k

)
.

Therefore it follows that the degree distribution is the binomial distribution
given by Eq. (4.2), i.e. k ∼ B(N − 1, p).

Proposition 7. The average degree 〈k〉 and the second moment of the degree
distribution 〈k(k − 1)〉 of a network in the G(N, p) ensemble are given by

〈k〉 =

N−1∑
k=0

kP (k) = p(N − 1),

〈k(k − 1)〉 =

N−1∑
k=0

k(k − 1)P (k) = p2(N − 1)(N − 2). (4.7)

Proof. We can calculate 〈k〉 and 〈k(k − 1)〉 over the distribution P (k) given by
Eq. (4.6) using the generating function of the degree distribution P (k). The
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generating function G0(x) of the distribution P (k) is given by

G0(x) =

N−1∑
k=0

P (k)xk

=

N−1∑
k=0

(
N − 1
k

)
pk(1− p)N−1−kxk

= (1− p+ px)
N−1

, (4.8)

where we used the Newton binomial. Using the properties of the generating
functions we have

〈k〉 = G′0(x)|x=1 = p(N − 1) (1− p+ px)
N−1−1

∣∣∣
x=1

= p(N − 1). (4.9)

Moreover we have

〈k(k − 1)〉 = G′′0(x)|x=1 = p2(N − 1)(N − 2) (1− p+ px)
N−3

∣∣∣
x=1

= p2(N − 1)(N − 2). (4.10)

4.5 Poisson networks (E except proof of Prop
8)

In many cases we are interested in characterizing large networks, with N � 1.
Moreover in many cases it is important to compare networks of different size
N but with the same average degree 〈k〉 = p(N − 1). In the framework of
random graph ensemble it is possible to consider the implications of the complete
randomness of the interactions as N →∞ while p(N − 1) = c.

Proposition 8. The degree distribution of a network in the G(N, p) ensemble,
with p = c

N−1 , and c is independent on N , can be approximated, in the large
network limit ( i.e. N →∞) by a Poison distribution with average c, notably

P (k) =
1

k!
cke−c, (4.11)

i.e. k ∼ Poi(c). These networks with Poisson degree distribution are also called
Poisson networks.

Proof. The degree of a network in G(N, p) ensemble, with p = c
N−1 and c

independent on N follows the binomial distribution

P (k) =

(
N − 1
k

)
pk(1− p)N−1−k

1

k!

(N − 1)!

(N − 1− k)!
pk(1− p)N−1−k. (4.12)
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i.e. k ∼ B(N − 1, p). Let us now show that in the limit N →∞, we have

ln

[
(N − 1)!

(N − 1− k)!
pk(1− p)N−1−k

]
→ ln[e−cck]. (4.13)

In fact using the Stirling approximation for the factorials lnn! ' n log n − n ,
the fact that N−1−k ' N−1 for (N−1)� k and the expansion ln(1+x) ' x
for x� 1 we get

ln

[
(N − 1)!

(N − 1− k)!
pk(1− p)N−1−k

]
' (N − 1) ln(N − 1)− (N − 1)− (N − 1− k) ln(N − 1− k)

+(N − 1− k) + k ln

[
c

N − 1

]
+(N − 1− k) ln

[
1− c

N − 1

]
' (N − 1) ln(N − 1)− (N − 1) log(N − 1− k)

+k ln(N − 1− k)− k + k log c− k ln(N − 1)−N c

N

' −(N − 1) ln

(
1− k

N − 1

)
− k + k ln c− c

' k log c− c = log
[
cke−c

]
. (4.14)

It follows that in the limit N → ∞ the degree distribution is a Poisson distri-
bution with average degree 〈k〉 = c.

P (k) =
1

k!
cke−c (4.15)

In figure 4.1 we plot the degree distribution P (k) with average degree 〈k〉 = c.

Proposition 9. The average degree 〈k〉 and the second moment of the degree
distribution 〈k(k − 1)〉 of a network in the G(N, p) ensemble with p = c

N−1 are
given, in the large network limit N � 1 by

〈k〉 =

N−1∑
k=0

kP (k) = c,

〈k(k − 1)〉 =

N−1∑
k=0

k(k − 1)P (k) = c2. (4.16)

Therefore the standard deviation of the degree distribution σ =

√
〈k2〉 − 〈k〉2 is

given by

σ =
√
c. (4.17)
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Figure 4.1: A Poisson degree distribution P (k) with average degree 〈k〉 = c.

Proof. In the hypothesis that p = c
N−1 and that N � 1 the degree distribu-

tion of a network in the G(N, p) ensemble, can be approximated by a Poisson
distribution, i.e. k ∼ Poi(c). Therefore can calculate the 〈k〉 and 〈k(k − 1)〉
over the Poisson degree distribution P (k) given by Eq. (4.11) using the gener-
ating function approach. The generating function G0(x) of the Poisson degree
distribution P (k) is given by

G0(x) =

∞∑
k=0

P (k)xk

=

∞∑
k=0

1

k!
cke−cxk

= e−c+cx = e−c(1−x), (4.18)

where we used the Taylor expansion of the exponential.
Using the properties of the generating function we find

〈k〉 = G′0(x)|x=1 = ce−c(1−x)
∣∣∣
x=1

= c

〈k(k − 1)〉 = G′′0(x)|x=1 = c2e−c(1−x)
∣∣∣
x=1

= c2. (4.19)

Therefore we have that the variance of the degree distribution σ2 is given by

σ2 = 〈k2〉 − 〈k〉2 = 〈k(k − 1)〉+ 〈k〉 − 〈k〉2

= c2 + c− c2 = c, (4.20)

and the standard deviation is given by σ =
√
c.
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It is easy to see that the expressions found for 〈k〉 and 〈k(k − 1)〉 in Eqs. (4.16)
coincide with the expression found previously Eqs. (4.7) for p = c

N−1 andN � 1.
In order to show that in this network large fluctuation in the degree are not al-
lowed, let us assume that a social network is described by a Poisson network
with average degree 〈k〉 = 100. Then the standard deviation σ of the degree
distribution is given by σ =

√
c =
√

100 = 10. Therefore observing people with
k = 1000 social contacts would correspond to an event distant 90σ from the
average and it would be very unlikely in the network!
Since such large fluctuations in the degree of individulas in social networks are
observed, the Poisson network cannot be a very good model for social networks.
Moreover this observation can be extended to any complex network character-
ized by large fluctuations in the degrees of the nodes.

4.6 Emergence of the giant component in ran-
dom graphs (E)

If we consider the connected components of a Poisson random graph as a func-
tion of the average degree 〈k〉 = c of the network we observe a dramatic struc-
tural change at c = 1. In fact for c < 1 the network is formed by a large number
of small connected components, formed by trees. Instead for c > 1 the largest
connected component acquires and extensive number of nodes, i.e. a number of
nodes of the same order of magnitude as N . This largest connected component
is called the giant component of the network. Moreover the giant component is
not any more tree-like and contains large loops. This transition occurs exactly
at c = 1 in the limit N → ∞, and this dramatic change of structure in the
network is an example of “phase transition” in the structure of the network. (In
physics phase transitions correspond to different phases of matter and describe
phenomena like the gas-liquid phase transition, or the magnetism of certain ma-
terials).

Given a complex system, it usually an important requirement that the net-
work contains a giant component because it is important to have paths joining
a large fraction of nodes in the network.

4.6.1 Giant component

A central role in network theory is played by the giant component of a network.

Definition 56. A network has a giant component when its largest connected
component H = (V ′, E′) is induced by a set of nodes V ′ formed by an extensive
number of nodes, i.e.

|V ′| ∼ O(N). (4.21)

In this case the giant component of the network coincides with the largest con-
nected component.
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4.6.2 Emergence of the giant component in Poisson ran-
dom networks

In the structure of random networks with average degree 〈k〉 = c we observe a
“phase transition” as a function of c. In fact when c = 0, every node has degree
zero and is in a different disconnected component. In this case we do not have
a giant component in the network. As the value c of the average degree of the
network increases, we observe the emergence of the giant component.

Proposition 10. A random network in the G(N, p) with average degree 〈k〉 → c
for N → ∞ contains n the limit N → ∞ a fraction of nodes S in the giant
component determined by the equation

S = 1− e−cS . (4.22)

Proof. Let us consider a random network in the G(N, p) ensemble with p = c
N−1

and with a number of nodes N � 1. In the limit N → ∞ this network has
an average degree 〈k〉 = p(N − 1) tends to limN→∞ p(N − 1) = limN→∞ c.
Therefore if c is a constant 〈k〉 → c as N →∞. If a fraction of nodes S is in the
giant component, S can be also interpreted as the probability that a random
node in the network belongs to the giant component. A node i of a G(N, p) is
not in the giant component if none of its links is connected to nodes that are
part of the giant component.
This means that for every other node j 6= i of the network one of the two
following conditions must be verified :

• (a) there is no link joining node i to node j;

• (b) there is a link between node i and node j but node j is not in the giant
component.

If p = c
N−1 is the probability that any two nodes of the network are linked,

and S is the probability that a random node in the network is in the giant
component, then we have that the two events (a) and (b) occur respectively
with probability 1− p and p(1−S). We call pjab = 1− p+ p(1−S = 1− pS the
probability that either condition (a) or condition (b) are satisfied for node j. It
follows that the probability 1− S that a node is not in the giant component of
the network is given by

1− S =
∏
j 6=i

pjab = [1− pS]
N−1

(4.23)

1− S =

[
1− c

N − 1
S

]N−1
(4.24)

1− S =

[
1− c

N − 1
S

]N−1
, (4.25)

where we have used p = c
N−1 . Finally, taking Eq. (4.25) and performing the

limit N →∞ we obtain

S = 1− e−cS . (4.26)



68CHAPTER 4. G. BIANCONI INTRODUCTION TO NETWORK THEORY

Starting from Eq. (4.22) we can find that the critical average degree for
having a giant component in a Poisson network is given by c = 1.

Proposition 11. A Poisson random network with average degree 〈k〉 = c has
a giant component if and only if c > 1.

Proof. As we have just observed the fraction of nodes S in the giant component
of a Poisson network with average degree 〈k〉 = c satisfies Eq. (4.22), i.e.

S = 1− e−cS . (4.27)

This equation is always satisfied for S = 0, but, depending on the value of the
average degree c it can have another non-trivial solution S > 0. Unfortunately
this equation cannot be solved analytically for arbitrary value of S. For this
reason we will make use of some graphical argument. The solution of Eq. (4.27)
can be seen as the value of S where the two functions y = f(S) with f(S) = S
and y = g(S) with g(S) = 1 − e−cS cross. In Figure 4.2 we plot the function
y = S and y = 1 − e−cS for different values of c. We see indeed that S = 0
is always a solution of S = 1 − e−cS and that for high enough value of the
average degree c another solution S > 0 emerges continuously from the value
S = 0. In order to detect when this new solution emerges, we impose that the
two functions y = f(S) = S and y = g(S) = 1− e−cS are tangent to each other
at S = 0, i.e. we impose

dS

dS

∣∣∣∣
S=0

=
d(1− e−cS)

dS

∣∣∣∣
S=0

,

1 = ce−cS
∣∣
S=0

,

1 = c. (4.28)

Therefore in a Poisson network with average degree c we observe a giant com-
ponent if and only if c > 1.

In Figure 4.3 we plot the fraction of nodes S in the giant component of
a Poisson network as a function of c. At c = 1 there is a continuous phase
transition in the network. In fact the value c = 1 separates the values of the
average degree c for which there is no giant component in the network (c < 1)
from the values of the average degree c for which there is a giant component in
the network (c > 1).

Proposition 12. For c = 1 + ε and ε � 1, the fraction of nodes in the giant
component increases with the average degree c as

S ∝ (c− 1)β , (4.29)

with β = 1.
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Figure 4.2: Graphical solution of Eq. (4.22). The point where the functions
y = f(S) = S and y = g(S) = 1 − e−cS cross is the solution of the Eq. (4.22).
For c ≤ 1 there is only the solution S = 0 and there is no giant component in
the network, whereas for c > 1 another non-trivial solution S > 0 emerge and
in the network there is a non-vanishing giant component.

Proof. Developing Eq. (4.22) for c− 1� 1, and S � 1, we get

S = 1−
(

1− cS +
1

2
c2S2 + . . .

)
,

(c− 1)S =
1

2
c2S2,

S =
2

c2
(c− 1)

S ∝ (c− 1). (4.30)

Random network can be distinguished into subcritical, supercritical and crit-
ical

• In a random graph, if limN→∞〈k〉 < 1 there is no giant component in
the network, i.e. the largest connected component in the network con-
tains a vanishing fraction of all the nodes. These random networks called
subcritical. For example Poisson networks with 〈k〉 = c < 1 are subcritical.
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Figure 4.3: Fraction of nodes S in the giant component of Poisson networks as
a function of their average degree 〈k〉 = c.

• On the contrary, if limN→∞〈k〉 > 1 we observe a giant component in the
random networks, i.e. the largest connected component of the network
contains a finite fraction of the total number of nodes in the network.
These random networks are called supercritical. For example Poisson net-
works with 〈k〉 = c > 1 are supercritical.

• Finally, if limN→∞〈k〉 = 1 we observe the emergence of the giant compo-
nent as a continuous phase transition. These random networks are called
critical. Poisson networks with 〈k〉 = c = 1 are critical.

In figure 4.4 we draw example of Poisson subcritical, critical and supercritical
network, showing the emergence of the giant component as a function of the
average degree in the network c.
Given a finite network, for a sufficiently high average degree, the network con-

tains a single component, we say in this case that the network is fully connected.
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Figure 4.4: Three Poisson networks of N = 500 nodes and average degree
respectively c = 0.7 (subcritical), c = 1 (critical) and c = 2 (supercritical).

This happens at c > ln(N) where N is the network size.

Proposition 13. For 〈k〉 ' lnN a network of size N belonging to the G(N, p)
ensemble contains a single connected component.

Proof. In a finite random network of size N we expect to have a single connected
component when the fraction of nodes in that is not in giant component 1−S <
1
N , meaning that we expect less than one node not to be in the giant component
of the network. Considering the fact that S must satisfy Eq. (4.23), we have

1− S = (1− pS)
N−1

, (4.31)

Putting S = 1− 1
N we find the minimal average degree 〈k〉 that is necessary to
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have less than one node outside the giant component, i.e. the minimal degree
that is required to have a fully connected network. In fact starting from Eq.
(??) we have

1

N
' (1− p)N−1 = e(N−1) ln(1−p). (4.32)

Using p� 1 and ln(1− x) ' −x for x ll1 wee get

1

N
= e−〈k〉

〈k〉 = ln(N) (4.33)

where the first equation is derived in the limit N � 1. Finally if the average
degree 〈k〉 > ln(N) a random network in the G(N, p) contains just a single
connected component.

4.7 Expected number of cliques in random graphs
(E)

Given a random network in the G(N, p) ensemble, it is sometimes important to
characterized also its local properties. In particular it is interesting to consider
the average number of some special subgraph as loops or cliques. Let us consider
here the cases of cliques of size n.

Proposition 14. In a random network of the G(N, p) ensemble the average

number 〈N cliques
n 〉 of cliques of size n is given by

〈N cliques
n 〉 =

(
N
n

)
pn(n−1)/2.

Proof. In fact there are

(
N
n

)
ways to choose n nodes out of the N nodes of

the network, and the probability that any set of n nodes is fully connected is
given by pn(n−1)/2 because we have to draw n(n− 1)/2 links.

Proposition 15. The average number of triangles a Poisson network with av-
erage degree c, is given by

〈N triangle
3 〉 =

1

6
c3, (4.34)

i.e. the average number of triangles in a Poisson network does not depend on
the network size. In other words the average number of triangles is finite also
in an infinite network. This implies that triangles are negligible in the network.

Proof. A triangle is a clique of size n = 3. A Poisson network with average
degree c is a network of the G(N, p) ensemble with p = c

N−1 . Therefore, using
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Eq. (4.34) we find that the average number of triangles a Poisson network with
average degree c is given by

〈N triangle
3 〉 =

N !

3!(N − 3)!

(
c

N − 1

)3

=
1

6
c3. (4.35)

This result can be extended to any loop of finite size n, finding that the
average number of these loops remain finite. Therefore the only relevant loops
in Poisson network, are loops of length n ≥ logN . For this reason, we say that
Poisson networks are “locally tree-like”.

Proposition 16. In a random network of the G(M,p) ensemble, with p = a
Nz ,

we have in the limit N →∞,

〈N cliques
n 〉 = 0 (4.36)

for every n > 2+z
z .

Proof. Starting from Eq (4.34), putting p = a
Nz and going in the limit N →∞

we get

〈N cliques
n 〉 =

(
N
n

)( a

Nz

)n(n−1)/2
,

=
Nn

n!

( a

Nz

)n(n−1)/2
,

=
an(n−1)/2

n!
Nn[1−z(n−1)/2]. (4.37)

Therefore we have that 〈N cliques
n 〉 → 0 as long as

1− z(n− 1)/2 < 0, (4.38)

i.e. n > z+2
z .

From this result it follows that we need at least to consider random networks
with p = a

Nz and z > 2
n−1 to observe a clique of size n with non zero probability

in the infinite network limit. It turns out that this is a sharp threshold, i.e. that
as soon as z = 2

n−1 we have some non-zero probability to observe a clique of
size n in the network. In Figure 4.5 we show the value of z for which different
network subgraph start to have non zero probability in a random graph G(N, p)
with p = a

Nz .
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Figure 4.5: Threshold values of z needed in order to observe the corresponding
network subgraph in a random network of the G(N, p) ensemble with p = a

Nz .

4.8 Generating functions (E)

Definition 57. Given a distribution pn its generating function G0(x) is given
by

G0(x) =

∞∑
n=0

pnx
n. (4.39)

Proposition 17. The generating function of an arbitrary degree distribution
has the following properties
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• (i) The generating function calculated for x = 1 is equal to one,i.e.

G0(1) = 1. (4.40)

• (ii) The m−moments of the distribution can be extracted by differentiating
the generating function n times, i.e.

dmG0(x)

dxm

∣∣∣∣
x=1

= 〈n(n− 1)(n− 2) . . . (n−m+ 1)〉. (4.41)

Proof. The relation (i) follows immediately from the normalization of the dis-
tribution pn. In fact

G0(1) =

∞∑
n=0

pn = 1. (4.42)

The relation (ii) can be proved easily by observing that

dmG0(x)

dxm

∣∣∣∣
x=1

=

∞∑
n=0

pn
dmxn

dxn

∣∣∣∣
x=1

=

∞∑
n=0

pnn(n− 1)(n− 2) . . . (n−m+ 1). (4.43)

As a consequence of this proposition we get that if we consider the generat-
ing function G0(x) of a degree distribution P (k) the average degree 〈k〉 in the
network and the second moment of the degree distribution 〈k(k − 1)〉 are given
respectively by

〈k〉 =
dG0(x)

dx

∣∣∣∣
x=1

〈k(k − 1)〉 =
d2G0(x)

dx2

∣∣∣∣
x=1

. (4.44)
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Chapter 5

Scale-free networks and the
Barabasi-Albert model

Despite the elegance and the importance of random graph theory, many real
networks cannot be described by random graphs. In particular most complex
networks are sparse, i.e. they have a finite average degree 〈k〉 but they cannot
be described by Poisson networks. This observation has been made in the late
nineties, by two very important papers:

• Collective dynamics of “small world” networks paper by D. J. Watts and
S. Strogatz (Nature 1998) in which it has been shown that many networks
have at the same time small average distance and large clustering coeffi-
cient, while Poisson networks have vanishing clustering coefficient in the
limit of large network sizes;

• Emergence of scaling in random networks paper by A.-L. Barabasi and
R. Albert (Science 1999) in which it was shown that many complex net-
works have a broad degree distribution with diverging 〈k2〉 that differers
substantially from the Poisson degree distribution of random graphs;

5.1 Introduction (E)

In this chapter we will introduce scale-free networks. In the paper Emergence of
scaling in random networks by A.-L. Barabasi and R. Albert (Science 1999) it
has been shown that many complex networks have a broad degree distribution
with a power law tail P (k) ' k−γ for k � 1. Moreover it was shown that most of
these networks have a finite average degree 〈k〉 but a diverging second moment
〈k2〉 in the large network limit N → ∞. Therefore the power-law exponent γ
is typically in the range γ ∈ (2, 3]. For these networks the average degree 〈k〉
is finite but the standard deviation of the degree σ =

√
〈k2〉 − 〈k〉2 diverge in

the large network limit, implying that the there is no characteristic scale for the

77
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degree in the network. Therefore these networks are called scale-free networks.
Scale-free networks are characterized by the presence of nodes with high-degree.

5.2 Power-law networks (E)

Definition 58. Power-law networks have power-law degree distribution P (k)
given by

P (k) = Ck−γ , (5.1)

with kmin ≤ k ≤ K and γ > 1. The quantity kmin is the minimal degree of the
network, while K is the maximal degree of the network, also called the cutoff.
The normalization constant C is fixed by the condition

∑
k P (k) = 1. Therefore

we have

C =

(
K∑

k=kmin

k−γ

)−1
. (5.2)

In the limit of large network sizes in which the cutoff K →∞ then we have

C → 1

ζ(γ, kmin)
, (5.3)

where ζ is the incomplete Riemann zeta function.
The condition γ > 1 is necessary for guarantee the normalization of the distri-
bution.

Proposition 18. The degree distribution of power-law networks can be plotted
as a straight line in a log-log plot.

Proof. In fact we have that if P (k) is given by Eq. (5.1) then

lnP (k) = lnC − γ log k. (5.4)

Therefore if y = lnP (k) and x = ln k the degree distribution is described by the
equation

y = A− γx (5.5)

where A = lnC, i.e. the degree distribution can be plotted as a straight line in
a log-log plot. The slope of the line is given by the power-law exponent γ.

In order to characterize several quantities (normalization constants, moment
of the distribution, natural cutoff ) of power-law networks is it sometimes useful
to perform estimates assuming that the degree is a continuous variable.



5.2. POWER-LAW NETWORKS (E) 79

Definition 59. In the continuous approximation, the degree k of a node in the
network is assumed to be a continuous variable taking real positive values. In
this approximation the degree distribution of a node is given by

P (k) = Ck−γ , (5.6)

with γ > 1 and k ∈ (kmin,K), and the normalization constant C is fixed by the
condition

1 =

∫ K

kmin

dkP (k) (5.7)

or equivalently

1 = C

∫ K

kmin

dkk−γ . (5.8)

Definition 60. The natural cutoff of a power-law network with power-law
exponent γ > 2 is the maximal degree expected in the network of N nodes if we
assume that the degree of each node is drawn randomly from a power-law degree
distribution P (k) = Ck−γ .

Proposition 19. The natural cutoff K of a power-law network with power-law
exponent γ > 1 diverges in the large network limit, and can be estimated to be

K ' min(N, kminN
1/(γ−1)). (5.9)

Therefore,

K '
{
kminN

1/(γ−1) for γ > 2
N for γ ∈ (1, 2].

Proof. Given a network of N nodes the maximum degree K should be lower than
N . Nevertheless it might be typically smaller than N . In order to characterize
the typical scale of the maximum degree K we can impose that in such network
the number of expected nodes with degree k > K is just 1. This implies that
we can estimate the value of the cutoff by imposing

N

∞∑
k=K

P (k) = NC

∞∑
k=K

k−γ = 1. (5.10)

In the continuous approximation we can substitute the sum over the degree with
an integral over the continuous variable k, getting

C

∫ ∞
K

dkk−γ =
1

N

C
1

γ − 1
K1−γ = N−1

K ' kminN1/(γ−1). (5.11)

Now this quantity will indicate the typical scale of the maximum degree K of
the network as long as this expression is smaller than the total number of nodes
in the network N .
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5.3 The average degree 〈k〉 and the second mo-
ment of the degree distribution 〈k2〉 of the
power-law networks (E)

Proposition 20. The moments 〈kn〉 of the degree distribution of power-law
networks, with degree distribution P (k) = Ck−γ , with k ∈ [kmin,K] are given
in the continuous approximation by

〈kn〉 =

 C 1
n+1−γ

(
Kn+1−γ − kn+1−γ

min

)
for n 6= γ − 1,

C ln
(

K
kmin

)
for n = γ − 1,

(5.12)

with the normalization constant C given by

C = (γ − 1)
1

k1−γmin −K1−γ
. (5.13)

Therefore in the limit of large network sizes N,K →∞, then 〈kn〉 diverges for
n ≥ γ − 1 and converges to a constant for n < γ − 1.

Proof. Let us evaluate first the normalization constant in the continuous ap-
proximation. The normalization constant is determined by

1 =

∫ K

kmin

dkP (k)

1 = C

∫ K

kmin

dkk−γ ,

1 = C
1

1− γ
[
K1−γ − (kmin)1−γ

]
. (5.14)

Therefore

C = (γ − 1)
1

(kmin)1−γ −K1−γ . (5.15)

Since γ > 1 for N →∞, i.e. K →∞ we have

C → (γ − 1)(kmin)γ−1, (5.16)

therefor C is converging to a finite value for every γ > 1.
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Let us evaluate 〈kn〉 in the continuous approximation. We have

〈kn〉 =

∫ K

kmin

dkknP (k)

= C

∫ K

kmin

dkkn−γ
C 1
n+1−γ k

n+1−γ
∣∣K
kmin

for n 6= γ − 1

C ln k|Kkmin
for n = γ − 1,

=

 C 1
n+1−γ

(
Kn+1−γ − kn+1−γ

min

)
for n 6= γ − 1,

C ln
(

K
kmin

)
for n = γ − 1.

(5.17)

For N → ∞ we have that K → ∞ and the 〈kn〉 converges to a finite value is
n < γ − 1 otherwise 〈kn〉 diverges.

Proposition 21. The average degree 〈k〉 and the second moment 〈k2〉 of a
power-law network, with degree distribution P (k) = Ck−γ , with k ∈ [kmin,K]
and cutoff K → ∞ and N → ∞ are either finite or diverging as N,K → ∞
depending on the value of the power-law exponent γ. In fact we have

• For γ > 3
The average degree 〈k〉 is finite in the limit N,K →∞.
The second moment 〈k2〉 of the degree distribution is finite in the limit
N,K →∞.

• For γ ∈ (2, 3]
The average degree 〈k〉 is finite in the limit N,K →∞.
The second moment 〈k2〉 of the degree distribution is diverging in the limit
N,K →∞.

• For γ ∈ (1, 2]
The average degree 〈k〉 is diverging in the limit N,K →∞.
The second moment 〈k2〉 of the degree distribution is diverging in the limit
N,K →∞.

Proof. In fact we have to calculate the moment 〈kn〉 with n = 1, 2.

• For γ > 3 we have for n = 1, 1 < γ − 1. In fact γ − 1 > 1. Therefore
〈k〉 is finite in the limit N,K → ∞. Moreover we have also for n = 2,
2 < γ−1. In fact γ−1 > 2. Therefore 〈k2〉 is finite in the limit N,K →∞.

• For γ ∈ (2, 3] we have for n = 1, 1 < γ − 1. In fact γ − 1 > 1. Therefore
〈k〉 is finite in the limit N,K →∞.
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Nevertheless for n = 2, we have 2 ≥ γ − 1. In fact γ − 1 ≤ 2. Therefore
〈k2〉 is diverging in the limit N,K →∞.

• For γ ≤ 2 we have for n = 1 1 ≥ γ − 1, i.e. γ − 1 ≤ 1, and therefore 〈k〉 is
diverging in the N,K →∞ limit.
Moreover we have for n = 2, 2 ≥ γ − 1. In fact γ − 1 ≥ 2. Therefore 〈k2〉
is diverging in the limit N,K →∞.

5.3.1 Other types of degree distributions

Examples of relevant degree distributions with finite average degree 〈k〉 are
Poisson, Exponential distributions P (k) given by

Poisson Distribution P (k) = 1
k!c

ke−c, c > 0
Exponential Distribution P (k) = (1− b)bk, b ∈ (0, 1)

(5.18)

(Note these distributions are normalized assuming that the maximal degree
K = ∞). These degree distributions have both a finite average degree 〈k〉 and
finite second moment 〈k2〉.

• Poisson networks
For networks with Poisson degree distribution P (k) = 1

k!c
ke−c we have

that 〈k〉 = c and 〈k(k − 1)〉 = c2, therefore 〈k2〉 = c(c + 1) and σ = c.
This means that if we want to model a social network with 〈k〉 = 100 the
standard deviation of the degree distribution will be σ = 10 and observing
a person with 1, 000 friends would be a event 90 standard deviation from
the mean, i.e. very unlikely

• Exponential networks
The average degree 〈k〉 of a network with exponential degree distribution

P (k) = (1 − b)bk is given by 〈k〉 = b
1−b , while the 〈k2〉 = b(b+1)

(1−b)2 . Both

moments are finite and σ =
√
b

1−b For example consider the a network as the

Internet with average degree 〈k〉 = 4. Then we would have b = 5
4 and the

standard deviation of the degree distribution would be σ =
√

5/2 ' 1.12.
Therefore it will be very unlikely to observe nodes of degree k = 100.

5.4 Scale-free networks (E)

Poisson and exponential networks cannot account for the large fluctuation in
the degree of the nodes observed in a large variety of complex networks, from
the Internet, to citation networks, to movie actor networks, to collaboration
networks, to the World-Wide-Web, to airport networks ect. In fact many net-
works have at the same time a finite average degree 〈k〉 but a very large second
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moment of the degree distribution, i.e. 〈k2〉. These networks have the degree
distribution that for large degrees can be approximated by a power-law with
power-law exponent γ ∈ (2, 3]. These networks are called scale-free networks.

Definition 61. Scale-free networks have a degree distribution P (k) that for
large values of the degree can be approximated by a power-law

P (k) ' ck−γ (5.19)

with γ ∈ (2, 3].

5.5 The Barabasi-Albert model (E)

5.5.1 Motivation and Definition

Albert-Laszlo Barabasi and Reka Albert in their paper Emergence of scaling in
random networks (Science 199) have shown that scale-free network constitute a
complex networks universality class. In fact they show that scale-free networks
are ubiquitous and are found in systems as different as the Internet, the World-
Wide-Web, the movie actor networks and the scientific collaboration networks,
just to cite a few. Moreover they identify the following two main characteristics
of a large number of scale-free networks.

• GROWTH:
A large variety of scale-free networks are growing, i.e. the number of nodes
N in these networks is increasing with time.
Example of growing scale-free networks are the World-Wide-Web, the In-
ternet, Wikipedia, the citation networks, the movie actor networks, online
social networks, ect..

• PREFERENTIAL ATTACHMENT
In many of these networks the“ popularity is attractive”, meaning that
the new links are not attached randomly but they follow the so called
preferential attachment, i.e. node of high degree are more likely to acquire
new nodes.
For example, a new webpage is more likely ot connected to a well known
website (e.g. BBC, New york Times ect.) than to an rather unknown one.
Similarly, highly cited papers are more likely to be cited again.

These two main ingredients are responsible for the emergence of scale-free net-
works. The Barabasi-Albert model (BA model) is the basic growing network
model that capture these two main characteristic and display a scale-free degree
distribution.

Definition 62. In the Barabasi-Albert model is the most fundamental growing
network model including the preferential attachment mechanism. At time t = 1
the network is formed by n0 nodes connected by m0 > m links.
The model evolves in time by
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• GROWTH:
At each time t > 1 a new node is added to the network and connected to
the existing network with exactly m links to distinct nodes of the network;

• PREFERENTIAL ATTACHMENT:
Every new link of the new node is attached to an existing node i of the
network not already linked to the new node with probability

Πi =
ki∑
j kj

(5.20)

where ki is the degree of node i and where the sum over the nodes j is
extended over all the nodes of the network not already linked to the new
node.

5.5.2 Mean-field approximation for growing network mod-
els

Definition 63. The mean-field approximation for growing network models con-
sist in taking two approximations.

• The continuous approximation for the degrees of the nodes k that can take
now any positive real value k > kmin and for the time of arrival of the
nodes in the network that can take any real positive value.

• The strictly speaking mean-field approximation for which the degree ki(t)
of node i at time t acquires a deterministic value equal to the average degree
of node i at time t in the original stochastic growing network model.

Proposition 22. In the mean-field approximation, the degree ki(t) of node i at
time t satisfies the following differential equation

dki(t)

dt
= m

ki∑
j kj

(5.21)

Proof. In fact in the mean-field approximation the degree ki(t) of node i at time
t is the average degree of the original BA model. Now the average number of
links that a node i acquires at time t is given by mΠi with Πi = ki∑

j kj
. It

follows that ki(t) satisfies Eq. (5.21).

Proposition 23. In the mean-field approximation the degree ki of node i arrived
in the network at time ti increases with time as a power-law. In particular

ki = m

(
t

ti

)β
(5.22)

with β = 1/2 for t ≥ ti. This implies that older nodes have higher degree.



5.5. THE BARABASI-ALBERT MODEL (E) 85

Proof. The degree ki(t) of node i at time t satisfies the mean-field Eq. (5.21).
In the limit of large times, t� 1 we can always neglect the probability that the
new links end on the same nodes. Since at each time we add a node with m
new links we have that∑

j

kj = 2(m0 +mt) ' 2mt (5.23)

where the last expression is derived for t � 1. Therefore Eq. (5.21) can be
written as

dki
dt

= m
ki

2mt
=

1

2

ki
t
, (5.24)

with initial condition ki(ti) = m because the degree of node i at the time ti
when it arrives in the network is given by m. Integrating by parts Eq. (5.24)
we have ∫ ki(t)

m

dk̃i(t)

k̃i
=

1

2

∫ t

ti

dt̃
1

t̃

ln ki(t)− lnm =
1

2
[ln t− ln ti]

ki(t) = m

√
t

ti
(5.25)

Therefore we have that the degree ki(t) of node i in the mean-field approximation
follows the evolution dictated by the following equation

ki(t) = m

√
t

ti
. (5.26)

for t ≥ ti. The node arrived in the network at time ti = 1 is the most connected,
so the cutoff of this network, can be estimated to be K = m

√
t and is diverging

as t→∞.

Proposition 24. In the mean-field approximation the degree distribution of the
BA model is given by

P (k) = 2m2k−3 = Ck−γ , (5.27)

with γ = 3.

Proof. In the mean-field approximation each node i have degree given by ki(t) =

m
√

t
ti

. In the mean field approximation also the time at which new nodes

arrive in the network is continuous. In this approximation the probability that
a random node i of the network is arrived in the network at time ti < τ is given
by

P (ti < τ) =
τ

t
(5.28)
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since the new nodes arrive in the network at a uniform rate of one. Let us
evaluate the probability P (ki(t) > k) that if we take a random node in the
network it will have degree ki(t) > k. We have

P (ki(t) > k) = P

(
m

√
t

ti
> k

)
= P

(
ti < t

m2

k2

)
=

1

t

(
t
m2

k2

)
=
m2

k2
, (5.29)

where in the last expression we have been using Eq. (5.28). This implies that
the probability P (ki(t) ≤ k) that if we take a random node in the network it
has degree ki(t) ≤ k is given by

P (ki(t) ≤ k) = 1− m2

k2
. (5.30)

Therefore we have that the degree distribution of the network P (k) is given, in
the mean-field approximation by

P (k) =
dP (ki(t) ≤ k)

dk

=
d

dk

(
1− m2

k2

)
=

2m2

k3
(5.31)

Therefore P (k) = Ck−γ with γ = 3. This implies that the generated network is
scale-free with a finite average degree 〈k〉 and a diverging second moment 〈k2〉
as the network size t→∞.

5.5.3 The master equation approach

The mean-field approximation is a drastic approximation, that is principle is
not very well controlled. Nevertheless for growing network models gives very
good qualitative insights on the dynamics of the degree is the nodes, and the
power-law exponent of the degree distribution. Here we present a more rigorous
approach base on the master equation of the model that will predict exactly the
degree distribution of the BA model in the limit t → ∞. This approaches is
called the master equation approach.

Proposition 25. The master equation is the equation describes the evolution of
the average number Nk(t) of nodes that at time t have degree k . This equations
reads for the BA model,

Nk(t+ 1) = Nk(t) +mΠ(k − 1)Nk−1(t)−mΠ(k)Nk(t) for k > m
Nk(t+ 1) = Nk(t)−mΠ(k)Nk(t) + 1 for k = m.
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where

Π(k) =
k∑
j kj

. (5.32)

Proof. With Nk(t) we indicate the average number of nodes that at time t have
degree k. At time t + 1 the average number of nodes have degree k is equal
to Nk(t) plus the average number of nodes that acquire degree k at time t + 1
minus the average number of nodes that had degree k at time t and they acquire
a degree k + 1 at time t+ 1.

• The average number of nodes that had degree k− 1 at time t and acquire
degree k at time t+ 1 is given by

mΠ(k − 1)Nk−1(t) (5.33)

where Π(k − 1) = k−1∑
j kj

. In fact at time t we add m new links the

probability that we attach the each new link to a node of degree k − 1 is
Π(k−1) and the average number of nodes that at time t have degree k−1
is Nk−1(t).

• The average number of nodes that had degree k at time t and acquire
degree k + 1 at time t+ 1 is given by

mΠ(k)Nk(t) (5.34)

where Π(k) = k∑
j kj

. In fact at time t we add m new links the probability

that we attach the each new link to a node of degree k is Π(k) and the
average number of nodes that at time t have degree k is Nk(t).

• Finally, if k = m, the average number of nodes Nk(t) of degree k = m is
increasing by one because of the arrival of the new node in the network of
degree k = m.

Therefore we get

Nk(t+ 1) = Nk(t) +mΠ(k − 1)Nk−1(t)−mΠ(k)Nk(t) for k > m
Nk(t+ 1) = Nk(t)−mΠ(k)Nk(t) + 1 for k = m.

where

Π(k) =
k∑
j kj

. (5.35)

Proposition 26. The degree distribution P (k) of the BA model in the limit
t→∞ is given by

P (k) =
2m(m+ 1)

k(k + 1)(k + 2)
, (5.36)

for k ≥ m. Therefore for large values of k we have P (k) ' Ck−γ with γ = 3.
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Proof. Considering the master equation we observe that for t � 1 we can ap-
proximate

Π(k) =
k∑
j kj
' k

2mt
(5.37)

because ∑
j

kj = 2(mt+m0) ' 2mt. (5.38)

Using this approximation valid for t� 1 we can write the master equation as

Nk(t+ 1) = Nk(t) + k−1
2t Nk−1(t)− k

tNk(t) for k > m
Nk(t+ 1) = Nk(t)− k

2tNk(t) + 1 for k = m.

Now we observe that for sufficiently large values of t� 1 we have

Nk(t) ' tP (k) (5.39)

where P (k) is the degree distribution of the network and the total number of
nodes in the network is given by N ' t. Substituting Eq. (5.58) into the master
equation (5.39), we obtain

(t+ 1)P (k) = tP (k) + (k−1)
2 P (k − 1)− k

2P (k) for k > m
(t+ 1)P (k) = tP (k)− k

2P (k) + 1 for k = m.

Let us write this last equation for k > m. We obtain

P (k) =
k − 1

2 + k
P (k − 1) (5.40)

for k > m. This recursive equation for k > m can be solved in terms of P (1)
giving

P (k) =

k∏
j=1+m

[
j − 1

2 + j

]
P (m)

=
Γ(k)Γ(m+ 3)

Γ(k + 3)Γ(m)
P (m)

=
(k − 1)(k − 2)(k − 3) . . . (m+ 3)× (m+ 2)× (m+ 1)×m

(2 + k)(1 + k)k(k − 1)(k − 2) . . . (m+ 3)
P (m)

=
m(m+ 1)(m+ 2)

k(k + 1)(k + 2)
P (m). (5.41)

Taking the last equation of (5.40) for k = m we obtain(
1 +

m

2

)
P (1) = 1

P (m) =
2

2 +m
. (5.42)
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Therefore it follows that the degree distribution of the BA model in the limit
t� 1 is given by

P (k) =
2m(m+ 1)

k(k + 1)(k + 2)
. (5.43)

5.6 Growing network model without preferen-
tial attachment (E)

5.6.1 Definition of the model

The preferential attachment in growing network model is necessary to have a
scale-free degree distribution. To show this let us consider the case of a growing
network without preferential attachment, where the new links of the new nodes
are attached to a random node of the network.

Definition 64. In the growing network without preferential attachment we
have that the new links are attached with uniform probability to the existing
nodes of the network. At time t = 0 the network is formed by n0 nodes connected
by n0 > m links.
The model evolves in time by

• GROWTH:
At each time t > 0 a new node is added to the network and connected to
the existing network with exactly m links to distinct nodes of the network;

• UNIFORM ATTACHMENT:
Every new link of the new node is attached to an existing node i of the
network not already linked to the new node with uniform probability. For
t� 1 we have that the number of nodes in the network are N(t) = t+ n0
and we can assume that the probability that the new link is attached to a
node i is given by

Πi =
1

N(t)
=

1

t+ n0
(5.44)

5.6.2 Mean-field approach

Proposition 27. In the mean-field approximation, the degree ki(t) of node i at
time t satisfies the following differential equation

dki(t)

dt
= m

1

N(t)
, (5.45)

with initial condition ki(ti) = m.
In the mean-field approximation, the degree ki(t) of node i arrived in the network
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at time ti evolves in time according to the equation

ki(t) = m+m ln

(
t

ti

)
. (5.46)

In the mean-field approximation the degree distribution P (k) of the growing
network model with uniform attachment is exponential and is given by

P (k) =
e

m
e−k/m, (5.47)

for k ≥ m.

Proof. In the mean-field approximation, the degree ki(t) is given by the average
degree of node i at time t in the stochastic model. Since at each time the degree
of node i increases in average of a quantity m 1

t+n0
' m

t for t� 1, we have that
ki(t) satisfies the following mean-field equation

dki(t)

dt
=
m

t
(5.48)

for t � 1 with initial condition ki(ti) = m where ti is the time at which the
node i has arrived in the network. Integrating this equation we get the time
evolution of the degree of node i in the mean-field approximation, i.e.

ki(t)−m =

∫ ki(t)

m

dt̃
m

t̃

ki(t) = m+m ln

(
t

ti

)
. (5.49)

In this growing network model with uniform attachment, the probability P (ti <
τ) that a random node of the network observed at time t has arrived in the
network at time ti < τ is given by

P (ti < τ) =
τ

t
. (5.50)

Therefore in order to find the mean-field results for the degree distribution in
this model we can following similar steps performed for the BA model. Defining
P (ki(t) > k) as the probability that a random node of the network has degree
ki(t) > k we obtain

P (ki(t) > k) = P

(
m ln

(
e
t

ti

)
> k

)
= P

(
ti < te−k/m+1

)
= ee−k/m (5.51)

The degree distribution of the model in the mean-field approximation is then
given by

P (k) =
dP (ki(t) < k)

dk

=
e

m
e−k/m (5.52)
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for k ≥ m. Therefore this model displays an exponential degree distribution
which displays finite average degree 〈k〉 and finite 〈k2〉.

5.6.3 Master equation approach

Proposition 28. The master equation is the equation describes the evolution of
the average number Nk(t) of nodes that at time t have degree k . This equations
reads for the uniformly growing network model,

Nk(t+ 1) = Nk(t) +mΠ(k − 1)Nk−1(t)−mΠ(k)Nk(t) for k > m
Nk(t+ 1) = Nk(t)−mΠ(k)Nk(t) + 1 for k = m.

where

Π(k) =
1

N(t)
. (5.53)

where N(t) = t+ n0 is the total number of nodes in the network at time t.

Proof. The derivation of this result follows the same steps used already for
deriving the master equation for the BA model. The difference is all encoded
in the different functional dependence of Π(k).

Proposition 29. The degree distribution P (k) of the growing network model
with uniform attachment in the limit t→∞ is given by

P (k) =

(
m

1 +m

)k−m
1

1 +m
(5.54)

for k ≥ m. Therefore for large values of k we have P (k) is decaying exponen-
tially.

Proof. For t� 1 we can approximate Π(k) as

Π(k) =
1

N(t)
=

1

t+ n0
' 1

t
. (5.55)

Therefore the master equation for the average number of nodes Nk(t) that have
degree k at time t reads for t� 1

Nk(t+ 1) = Nk(t) +
m

t
Nk−1(t)− m

t
Nk(t), (5.56)

for k > m and

Nk(t+ 1) = Nk(t)− m

t
Nk(t) + 1, (5.57)

for k = m. Now we observe that for sufficiently large values of t� 1 we have

Nk(t) ' tP (k) (5.58)
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Therefore the master equation becomes

(1 +m)P (k) = mP (k − 1) (5.59)

for k > m. This recursive equation has solution

P (k) =

(
m

1 +m

)k−m
P (1). (5.60)

Moreover the master equation (5.53) for k = m can be written has solution

P (1) =
1

1 +m
. (5.61)

(5.62)

Therefore the degree distribution of this model is given by

P (k) =

(
m

1 +m

)k−m
1

1 +m
(5.63)

for k ≥ m.



Chapter 6

Evolving networks

6.1 Introduction (E)

Some people have a special talent to turn a random meeting into a long lasting
social interaction, acquiring new friends at a faster rate than other people.
Similarly, some scientific papers are highly innovative and they attract citations
at a faster rate than other ones. In very competitive environments, like in the
World-Wide-Web, some nodes like Google or Facebook have acquired links at
an incredible fast rate, becoming the leading websites of the entire network. We
tend to associate these differences with some perceived quality of the nodes, such
as the social skills of an individual, the content of a web page, or the content of
a scientific article. We will call this the node’s fitness, describing its ability to
compete for links at the expense of other nodes.

In this chapter we will provide describe the Bianconi-Baraási model that
is the most basic model for network evolution that allow very fit nodes, even
latecomers, to become the hub of the network. This model can explain the
fundamental mechanism by which the nodes of a network can acquire links at
different rates. Interestingly enough this model, as a function of the distribution
of the fitness of the nodes can display a structural phase transition, called a
condensation transition. When the condensation phenomena occurs the fittest
node of the network becomes a super hub, i.e. it acquires a finite fraction of
links of the network. Despite the clear differences between this model and the
physics of a quantum Bose gas, the model can be mathematically mapped to
a Bose gas. In this mapping the condensation phase transition observed in the
structure of the network can be mapped to a well known phase transition in
quantum physics, the Bose-Einstein condensation of a quantum Bose gas.

The remaining of this chapter will be devoted on one side in describing
additional mechanisms for complex network evolution describing different phe-
nomena as the addition of internal links or removal of nodes from the network,
on the other side, we will explore the evolution of Cayley trees, described by a
Fermi-Dirac distribution, emphasizing important mechanism by which quantum

93
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statistics can emerge in evolving networks.

6.2 The Bianconi-Barabási model (E)

The fitness is the ability of a person to turn a random encounter in a lasting
friendship, or the content of a scientific article or the innovation of a webpage
or of a company. In the Barabási-Albert model, it is assumed that the rate at
which a node acquires new links only depend on its degree (preferential attach-
ment). Therefore in the Barabási-Albert model the nodes have a ’first mover
advantage’, i.e. the nodes arrived at the beginning of the network evolution are
also the nodes with higher degree. This is not the case for complex networks
in general, for example in the World-Wide-Web, Google was certainly a late-
comer arriving in the network after very successful search engines like Altavista
an Inktomi. Nevertheless, Google, thanks to the PageRank algorithm, estab-
lished itself and overcome previous search engines like Altavista and Inktomi.
Similarly, Facebook had an even later start and become the Web’s biggest hub
only in 2011. The Bianconi-Barabási model describes the success of latecomers
in complex networks through the introduction of a parameter, the fitness ηi of
each node i characterizing the ability of a node to acquire new links. Therefore
the Bianconi-Barabási model is a growing network model evolving according to
a fitness based preferential attachment,describing the fact that new links are
more likely to be attached to high degree and high fitness nodes.

Definition 65. The Bianconi-Barabási model is the most fundamental grow-
ing network model including the effect of a preferential attachment mechanism
biasing the choice of the target node of the new links toward nodes having high
degree and high fitness value. At time t = 1 the network is formed by n0 > m
nodes connected by m0 links. Each node i is assigned a fitness value ηi drawn
from the distribution ρ(η) and kept fixed over time.
The model evolves in time by

• GROWTH:
At each time t > 1 a new node is added to the network and connected to
the existing network with exactly m links to distinct nodes of the network.
The new node has a fitness η drawn from the distribution ρ(η). ;

• PREFERENTIAL ATTACHMENT TO NODES OF HIGH DE-
GREE AND HIGH FITNESS VALUE:
Every new link of the new node is attached to an existing node i of the
network not already linked to the new node with probability

Πi =
ηiki∑
j ηjkj

(6.1)

where ki is the degree of node i and where the sum over the nodes j is
extended over all the nodes of the network not already linked to the new
node.
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6.2.1 Mean-field solution of the model

Let us solve the model in the mean-field approximation. We will first define the
differential equation that the degree ki(t) of node i needs to satisfy, and then
solve this equation using a self-consistent approach.Finally we find the degree
distribution of the model.

Proposition 30. In the mean-field approximation, the degree ki(t) of node i at
time t satisfies the following differential equation

dki(t)

dt
= m

ηiki∑
j ηjkj

(6.2)

Proof. In fact in the mean-field approximation the degree ki(t) of node i at time
t is the average degree of the original stochastic model. Now the average number
of links that a node i acquires at time t is given by mΠi with Πi = ηiki∑

j ηjkj
. It

follows that ki(t) satisfies Eq. (6.2).

Proposition 31. In the mean-field approximation the degree ki of node i arrived
in the network at time ti increases with time as a power-law with exponent
f(η) = η/C. In particular

ki = m

(
t

ti

)ηi/C
(6.3)

for t ≥ ti. In Eq. (6.3) C is a constant depending on the fitness distribution
ρ(η) satisfying the following equation

1 =

∫
dηρ(η)

1

C/η − 1
. (6.4)

The dynamical solution of the model implies that nodes of higher fitness
value acquire links at a faster rate than nodes with low fitness. Therefore
latecomers, with high fitness will become the hubs of the network giving rise to
the so called fit-get-rich phenomena.

Nevertheless if one compares nodes with the same fitness older nodes have
more links than younger ones.

Proof. We assume self-consistently that the normalization sum
∑
j ηjkj has the

limiting behaviour
∑
j ηjkj ' mCt for t� 1, therefore

lim
t→∞

∑
j ηjkj

mt
= C (6.5)

with C > 0. (Self-consistently means that we will check at the end of the
calculation if this is indeed consistent with the solution of the model.) In this
hypothesis, and in the limit t� 1 we can write the dynamical man-field equation
for the degree ki(t) of node i, getting

dki
dt

=
ηiki
Ct

, (6.6)
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with initial condition ki(ti) = m. This equation has solution

ki(t) = m

(
t

ti

)η/C
. (6.7)

The us note that, since the total number of links is increasing linearly with time,
the degree of the nodes in the network cannot grow faster than linearly in time.
Therefore let us assume η/C < 1. In order to check if our assumption in Eq.
(6.5) is consistent with the solution (6.7) we note that Eq. (6.5) implies

lim
t→∞

〈∑
j ηjkj

〉
mt

= C (6.8)

Now the quantity
〈∑

j ηjkj

〉
can be calculated using the solution Eq. (6.7) and

the continuous approximation , getting〈∑
j

ηjkj

〉
'

∫
dηρ(η)

∫ t

1

dtjηm

(
t

tj

)η/C
m

∫
dηρ(η)

η

1− η/C

[
t− tη/C

]
(6.9)

Since η/C < 1, if we perform the limit in Eq. (6.8), we get a self-consistent
equation for the constant C given by

C =

∫
dηρ(η)

η

1− η/C
(6.10)

this equation can be also written as

1 =

∫
dηρ(η)

1

C/η − 1
. (6.11)

Proposition 32. In the mean-field approximation the degree distribution of the
Bianconi-Barabási model is given by

P (k) =

∫
dηρ(η)

C

η
mC/η 1

kC/η+1
. (6.12)

Moreover it can be shown that this networks always generate a scale-free network
with finite 〈k〉 and diverging 〈k2〉, i.e. the degree distribution is described by
a power-law P (k) ∝ k−γ with γ ∈ (2, 3] including sometime some logarithm
corrections to this scaling.

Proof. The probability P (ki(t) > k|ηi = η) that a random node with fitness
value ηi = η has degree ki(t) > k, in the mean-field approximation can be
calculated as follow

P (ki(t) > k|ηi = η) = P

(
m

(
t

ti

)η/C
> k

)
= P

(
ti < t

(m
k

)C/η)
=
(m
k

)C/η
.(6.13)
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Therefore, the degree distribution P (k|η) of the nodes with fitness value η is
given by

P (k|η) =
dP (ki(t) < k|ηi = η)

dk
=

d

dk

(m
k

)C/η
=
C

η
mC/η 1

kC/η+1
. (6.14)

Finally the degree distribution of the entire network is given by

P (k) =

∫
dηρ(η)P (k|η) =

∫
dηρ(η)

C

η
mC/η 1

kC/η+1
. (6.15)

Let us consider the Bianconi-Baraási model for simple example of fitness
distribution.

• 1) Case in which all the fitness are the same
In this case ρ(η) = δ(η, 1), i.e. ηi = 1 ∀i. In this limit the Bianconi-
Barabási model becomes the Baraási-Albert model with C = 2 solution of
the equation

1 =
1

1/C − 1
. (6.16)

The degree of the nodes increase in time with the same rate

ki(t) = m

(
t

ti

)1/2

, (6.17)

i.e. older node are the nodes have higher degree than young nodes. The
degree distribution is power-law with exponent

γ = 1 + C = 3. (6.18)

• 2) Case of uniform distribution of fitness

In this case ρ(η) = 1, and η ∈ [0, 1]. The with higher fitness increases their
degree faster than nodes with lower fitness (see figure 6.1). The mean-field
evolution is described by

ki(t) = m

(
t

ti

)ηi/C
. (6.19)

The constant C satisfies the equation

1 =

∫ 1

0

η/C

1− η/C
dη

1 = C

∫ 1/C

0

(
−1 +

1

1− x

)
dx

2

C
= − ln

(
1− 1

C

)
1− 1

C
= e−2/C , (6.20)
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whose solution is C? = 1.255 . . .. The degree distribution is given by

P (k) =

∫ 1

0

dηm−1
C?

η

(m
k

)C?/η+1

' k−1−C
?

ln k
, (6.21)

i.e. the power-law exponent γ = 1 + C? = 2.255 . . . but the degree distri-
bution has additional logarithm corrections to a pure power-law scaling.
In fact the integral in Eq. (6.21) can be evaluated by saddle point by
writing it has

P (k) =

∫ 1

0

dηm−1eFk(η) (6.22)

where

Fk(η) = (C?/η + 1) ln
(m
k

)
+ ln

(
C?

η

)
. (6.23)

Expanding Fk(η) around its maximum in the interval η ∈ [0, 1] achieved
for η = 1 we get

Fk(η) ' Fk(1) + F ′k(1)(η − 1)

=
[
(C? + 1) ln

(m
k

)
+ ln(C?)

]
+ [C? ln(k/m)− 1] (η − 1) (6.24)

where we stop at the first order of the expansion. Therefore

P (k) =

∫ 1

0

dηm−1eFk(η)

'
∫ 1

0

dηm−1eFk(1)+F
′
k(1)(η−1)

= m−1eFk(1)
1

F ′k(1)
(1− e−F

′
k(1))

= mC?

C?k−1−C
? 1

C? ln(k/m)− 1

[
1− e

(m
k

)C?]
(6.25)

and for k � 1 we have

P (k) ∝ k−1−C
? 1

ln(k)
(6.26)

6.3 Evolving networks

6.3.1 Model with initial attractiveness of the nodes (E)

On of the most simple variations of the Barabási-Albert model is the model
with initial attractiveness of the nodes A > −m.
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Figure 6.1: The effect of fitness in the dynamics of the degree of the nodes, node
with higher fitness also if arrived later in the network, can take over nodes with
lower value of the fitness, because their degree increases at a faster rate than
the degree of less fit nodes.
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Definition 66. In the model with initial attractiveness of the nodes A the pref-
erential attachment of the BA model is slightly modified At time t = 0 the
network is formed by n0 nodes connected by m0 > m links.
The model evolves in time by

• GROWTH:
At each time t > 0 a new node is added to the network and connected to
the existing network with exactly m links to distinct nodes of the network;

• PREFERENTIAL ATTACHMENT WITH INITIAL ATTRAC-
TIVENESS:
Every new link of the new node is attached to an existing node i of the
network not already linked to the new node with probability

Πi =
ki +A∑
j(kj +A)

(6.27)

where ki is the degree of node i and where the sum over the nodes j is
extended over all the nodes of the network not already linked to the new
node.

This model can be easily solved using the same methods adopted for the BA
model (either mean-field of master equation approach). We leave as an exec rice
for the student that the following conclusion can be drawn form the mean-field
solution of the model.

• Evolution of the degrees ki(t) in the mean-field approximation
The degree ki(t) of node i evolves, in the mean-field approximation ac-
cording to the following dynamic behaviour

ki(t) = (m+A)

(
t

ti

) 1
2+A/m

−A (6.28)

for t� 1.

• The degree distribution P (k) of the network the mean-field approximation
The degree distribution P (k), is given in the mean field approximation is
scale-free

P (k) ∝ k−γ (6.29)

with power-law exponent γ = 3 + A
m .

6.3.2 Krapivsky-Redner model with non-linear preferen-
tial attachment (NE)

In the Krapivsky-Redner mode a non-linear preferential attachment with prob-
ability Πi ∝ kαi and α > 0 has been considered. The results is that only in the
case α = 1 a scale-free network can be generated by the model. Therefore the
model is defined as follows.
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Definition 67. In the Krapivsky-Redner model includes a non linear preferen-
tial attachment. At time t = 0 the network is formed by n0 nodes connected by
m0 > m links.
The model evolves in time by

• GROWTH:
At each time t > 0 a new node is added to the network and connected to
the existing network with exactly m links to distinct nodes of the network;

• NON-LINEAR PREFERENTIAL ATTACHMENT :
Every new link of the new node is attached to an existing node i of the
network not already linked to the new node with probability

Πi =
kαi∑
j k

α
j

(6.30)

where ki is the degree of node i and where the sum over the nodes j is
extended over all the nodes of the network not already linked to the new
node.

The degree distribution of the model depends on the value of the exponent
α modulating the non-linear preferential attachment.

• Linear preferential attachment: α = 1
The model reduces to the BA model.
The network is scale-free with power-law exponent γ = 3.

• Sublinear preferential attachment α < 1
The degree distribution is described by a stretched exponential function
with finite average degree 〈k〉 and finite 〈k2〉. The degree distribution is
homogeneous, the network is not scale-free.

• Superlinear preferential attachment α > 1
There is a gelation phenomena in the network, in which one node, the old-
est node of the network acquires a number of links k1(t) ' t. The degree
distribution is highly inhomogeneous but not described by a scale-free de-
gree distribution. The gelation s a phenomena close the the condensation
of the links but the fraction of links on the gelated node is always almost
equal to 1. In the model there is not fitness, therefore only the oldest node
can acquire a finite fraction of the links, while in a network displaying the
Bose-Einstein condensation a node with very high fitness, also if it is not
the first can acquire a finite fraction of the links of the network.

6.3.3 Effect of node deletion (E)

In the growing network model, new nodes are continuously added to the network
but sometimes in real network nodes are also leaving the network. For example
in scientific collaboration networks, some node might stop the activity due to
change of job or retirement. In the contest of growing network model where the
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rate at which new nodes are added in the network is 1, we have the following
scenario, depending on the rate r at which the nodes are removed from the
network.

• Case r < 1.
The network is growing in size, despite the removal of some nodes at rate
r. In presence of preferential attachment the network remains scale-free.

• Case r = 1.
In this case the model is dominated by fluctuations. In some realization
the networks can be reduced to zero. In general we do not expect scale-free
degree distribution since the network is not growing typically.

• Case r > 1.
The network is shrinking in size, describing a network that is disappearing.



Chapter 7

Small world properties of
complex networks

7.1 Introduction (E)

In this chapter we will discuss the small-world properties of a number of com-
plex networks, and discuss the Small World Network Model proposed by Watts
and Strogatz for modelling complex networks. In order to introduce the small-
world properties of complex networks and their implication we will first define
the clustering coefficient, then state the small-world network properties which
define the wide universality class of small-world networks with small average dis-
tance and large clustering coefficient. Subsequently we calculate the clustering
coefficient the diameter and the average distance of several reference networks.
Finally we will discuss the small-world network model first proposed by Watts
and Strogatz to model complex networks.

7.2 Clustering coefficient of a network (E)

Definition 68. The local clustering coefficient Ci of node i of degree ki is given
by

Ci =

{
# of triangles passing though node i

1
2ki(ki−1)

for ki > 1,

0 for ki = 0, 1.
(7.1)

where 1
2ki(ki−1) enumerates the number pairs of distinct nodes which are neigh-

bours of node i if ki > 1.

The clustering coefficient measure “partial transitivity” in networks, e.g. in
social networks measures the fraction of the total pairs of friends of a node
(neighbours in the social network) that are each other friends. In the figure

103
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i

Figure 7.1: The local clustering coefficient of node i is given by Ci = 7/45.

7.1 we show how to calculate the clustering coefficient of a node in a concrete
example.

The local clustering coefficient Ci of node i is given by Ci = 1 if all the pairs
of neighbours nodes of node i are connected, i.e. if the set of nodes formed
by node i and its neighbours are in a clique. If, instead, Ci = 0 none of the
neighbours of node i are linked together. For example in a tree network all the
nodes i of the network have local clustering coefficient Ci = 0.

Definition 69. The Watts-Strogatz clustering coefficient CWS of a network of
size N is the average of the local clustering over all the nodes of the network
and is given by

CWS =
1

N

N∑
i=1

Ci. (7.2)

This is the definition of the clustering coefficient used by Watts and Stro-
gatz. Sometimes in the literature and alternative global clustering coefficient is
introduced.

Definition 70. The global clustering coefficient C of a network of size N is
given by

C =
3#of triangles in the network

#of distinct paths of length 2
. (7.3)
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This last definition of the clustering coefficient is used sometimes to avoid
the fact that the Watts and Strogatz clustering coefficient is dominated by the
contribution of nodes with small degree. For regular lattices where the local
structure of the network around node i is independent on the choice of the node
i, then the Watts-Strogatz clustering coefficient is equal to the global clustering
coefficient and the local clustering coefficient, i.e. Ci = CWS = C.

7.3 The Small World Network Properties

In their paper Watts and Strogatz show that many complex networks with
finite average degree 〈k〉 from the neural networks of C.elegans to the actor
collaboration network have two coexisting important properties:

Definition 71. The networks that have the diameter D scaling with the number
of nodes as

D = O(lnN), (7.4)

or

D = o(lnN) (7.5)

i.e. they display the small world distance property.

Proposition 33. If a network displays the small-world distance property, then,
since we have always 〈d〉 = ` ≤ D, then either

` = O(lnN) (7.6)

or

` = o(lnN). (7.7)

Since, as we will see in the following paragraphs, the average distance of a
random Poisson network with average degree 〈k〉 is given by

`rand =
lnN

ln〈k〉
(7.8)

a network has a small world distance property if its diameter and its average
distance are of the same order of magnitude of the average distance of a random
Poisson network with the same average degree 〈k〉.

Definition 72. The network with Watts and Strogatz clustering coefficient CWS

CWS �
〈k〉
N

(7.9)

have high clustering coefficient
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C.elegans neural network 282 14 2.65 2.25 0.28 0.05
Power-grids 4941 2.67 18.7 12.4 0.08 0.005

Internet (snapshots) 3015-6209 3.52-4.11 3.7-3.75 6.36-6.18 0.18-0.3 0.001
WWW (snapshot) 153127 35.21 3.1 3.35 0.1078 0.00023
World, synonyms 22311 13.48 4.5 3.84 0.7 0.006

Table 7.1: Small-world universality: Many complex networks have the two
small-world properties, as first observed by Watts and Strogatz in 1998.

Since, as we will see in the following paragraphs, the clustering coefficient of
a random Poisson network with average degree 〈k〉 is given by

Crand =
〈k〉
N

(7.10)

a network has a high clustering coefficient if its clustering coefficient is much
larger than the clustering coefficient of a random Poisson network with the same
average degree 〈k〉. The following is the strict definition of small-world networks

Definition 73. Stricktly speaking small-world networks have at the same time
the small-world distance property and high clustering coefficient.

The small-world networks are ubiquitous, and for this reason the small-world
networks are said to constitute a complex networks universality. In Table ?? we
provide a table of a large set of real complex networks that display the small
world properties. Example include the neural network of the worm c.elegans,
the movie actor network, the collaboration networks of scientists, food webs,
the power-grid, and words synonyms.

7.4 Regular one dimensional lattice with nodes
of degree k (E)

Here we will consider a specific example of regular lattice: a regular one-
dimensional lattice with nodes of degree k.

Definition 74. A one dimensional regular lattice with nodes of degree k (with
k even) is a chain of N nodes labelled i = 1, 2 . . . , N with N even, and such that

Aij =

{
1 if i 6= j &

∣∣N
2 −

∣∣N
2 − |i− j|

∣∣∣∣ ≤ k/2
0 otherwise

An example of the regular one dimensional lattice with nodes of degree k = 4
is shown in Figure 7.2.
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Figure 7.2: One dimensional regular lattice with nodes of degree k = 4

7.4.1 Clustering coefficient

Proposition 34. The Watts-Strogatz clustering coefficient CWS in a regular
one dimensional lattice with nodes of degree k is equal is given by

CWS =
3

4

k − 2

k − 1
. (7.11)

Proof. The number of triangles passing through a given node in the network is
given by (

k

2
− 1

)
3

4
k (7.12)

In fact there (k/2 − 1) + (k/2 − n) triangles passing through the node i and a
node j distant n ∈ [1, k/2] steps around the ring from the original node i of the
network as shown in Figure 7.3. If we sum over the nodes j distant n ∈ [1, k/2]
either on the right or on the left of the original node i we obtain the total
number of triangle passing through the node i multiplied by two, because every
triangle is counted twice.

Therefore the number of triangles passing through a node is given by

k/2∑
n=1

k − 1− n = (k − 1)
k

2
− k

4

(
k

2
+ 1

)
= (7.13)
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Figure 7.3: Number of triangles passing through two linked nodes i and j distant
n = mod(i− j,N/2) on the ring. The number of closed triangles are (k/2−1)+
(k/2− n) for a regular one-dimensional lattice of nodes of degree k. The figure
show a region of a one dimensional lattice with nodes of degree k = 4. For our
concrete example n = 1.
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Therefore the clustering coefficient is given by

Ci =
3
4k
(
k
2 − 1

)
1
2k(k − 1)

=
3

4

k − 2

k − 1
. (7.14)

for every i. It follows that

CWS =
3

4

k − 2

k − 1
. (7.15)

Therefore the clustering coefficient is a constant independent on the network
size, and therefore CWS if finite in the limit N →∞.

7.4.2 Diameter and Average Distance

Proposition 35. The diameter of the regular one dimensional lattice with nodes
of degree k has a diameter that scales in the large network limit N � 1, as

D ' N

k
, (7.16)

therefore the network does not have the small-world distance property.

Proof. The pair of nodes that are further apart are the ones at distance N/2.
Since nodes at distance k/2 are directly linked we can extimate the diameter of
the network as

D ' N/2

k/2
=
N

k
. (7.17)

Similarly it can be shown that the the following statement for the average
distance of the regular one dimensional lattice with nodes of degree k.

Proposition 36. The average distance ` of the regular one dimensional lattice
with nodes of degree k increases linearly with the network size, i.e.

` ' N

k
. (7.18)

7.5 Cayley tree (E)

A Cayley tree is a simple example of symmetric regular tree in which the nodes
have either degree k or degree 1 (see figure 7.4 for and example of a Cayley tree
with k = 3).
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Definition 75. A Cayley tree is a symmetric regular tree constructed starting
from a central node of degree k.
In a Cayley tree network every node at distance d from the central node has
degree k until we reach the nodes at distance P that have degree one and are
called the leaves of the network. The quantity b = k − 1 is called the branching
ratio of the tree.

1
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7 8

9
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16 17

18

19

20

21

22

Figure 7.4: A Cayley tree network with k = 3 and P = 3.

7.5.1 Diameter of a Cayley tree

The Cayley tree has a small-world distance property, in fact we will prove the
following proposition.

Proposition 37. The diameter D of a Cayley tree can be expressed in terms
of the total number of nodes N in the network giving in the large network limit
N � 1

D ' lnN
1
2 ln(k − 1)

, (7.19)

i.e. D = O(lnN), and therefore the Cayley tree has the small-world distance
property.

Proof. The proof of the proposition as several steps.
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• a) Let us prove by iteration that the number of nodes Nd at distance d
from the central node is given by

Nd =

{
kbd−1 ford ≥ 1,

1 for d = 0,

where the quantity b = k−1 is called the “ branching ratio” of the Cayley
tree. The above relation is valid for the nodes at distance d = 0. In fact
the number of nodes at distance zero from the central node is given by
one, i.e. it is only the central node itself. Moreover the relation given by
Eq. (7.20) is also valid for distances d = 1 from the central node, since
the degree of the central node is k.
Let us now show that if the relation (7.20) is valid for the nodes at distance
d ≥ 1, then it must be valid for the nodes at distance d+ 1.
In fact we have that every node i at distance d < P from the central node
has degree k, i.e. is linked to other k nodes.
Since the Cayley tree is connected and does not contain loops, only one of
these k links is attached to a node at distance d− 1 from the central node
while the other b = k − 1 links are attached to nodes at distance d + 1
from the central node. It follows that each node at distance d will branch
into b = k − 1 nodes at distance d+ 1.
Moreover since the Cayley tree network does not contain loops any node
at distance d+ 1 from the central node can be reached only by one node
at distance d.
Therefore we will have

Nd+1 = Nd(k − 1) = kbd−1b = kbd (7.20)

• b) Using the formula for the sum of the first terms of a geometric series,
we now show that the total number of nodes in the network is given by

N = 1 + k

[
bP − 1

b− 1

]
. (7.21)

The total number of nodes in the Cayley tree is given by the sum of 1 (
indicating that there is only one central node) at the sum of all the number
of nodes Nd with distances d ∈ [1,P] from the central node. Therefore we
have

N = 1 +

P∑
d=1

kbd−1 = 1 + k
1− bP

1− b
= 1 + k

[
(k − 1)P − 1

k − 2

]
. (7.22)

• c) We then observe that the diameter D of the Cayley tree is given by
D = 2P.

In fact, the maximum distance in the network is the distance between
any two leaves nodes connected to the central node by non-overlapping
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paths. Since the distance of any leaf node from the central node is P, the
diameter of the Cayley tree is given by D = 2P.

• d) Finally we find an expression for the diameter D of the network in
terms of the total number of nodes N .
Using D = 2P and using Eq. (7.21) we can derive the expression of D as
a function of N , i.e.

N = 1 +
k

k − 2

[
(k − 1)D/2 − 1

]
(N − 1)(k − 2)

k
= (k − 1)D/2 − 1

(N − 1)(k − 2)

k
+ 1 = (k − 1)D/2

D

2
ln(k − 1) = ln

[
1 +

(N − 1)(k − 2)

k

]
D =

2

ln(k − 1)
ln

[
1 + (N − 1)

k − 2

k

]
. (7.23)

This final expression in the limit N � 1 is given by

D ' lnN
1
2 ln(k − 1)

(7.24)

7.5.2 Clustering coefficient

Nevertheless the Cayley tree is not a strickly speaking small-world network
because it has zero clustering coefficient.

Proposition 38. The local clustering coefficient Ci of any node i of a Cayley
tree is zero, i.e. Ci = 0. Moreover also the Watts and Strogatz clustering
coefficient and the global clustering coefficient of the Cayley tree are zero, i.e.
CWS = C = 0.

Proof. The Cayley network is a tree, i.e. does not contains any loop and
therefore does not contain any triangle. It follows that in a Cayley tree is
Ci = CWS = C = 0 for every node i of the network.

7.6 Random Poisson network (E)

The Random Poisson network is a network of the G(N, p) ensemble with p = 〈k〉
N .
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7.6.1 Average distance and Diameter of a Random Graph

A random Poisson network is locally tree-like (the number of finite loops is finite
in the limit of large network sizes N → ∞.) Therefore it is possible to extend
and generalize the argument used for calculating the diameter of a Cayley tree
to evaluate the average distance and the diameter of random graphs. Here we
give the following proposition, whose proof will be given in chapter 7.

Proposition 39. In a random Poisson network with average degree 〈k〉 = c
the number Nd of nodes at distance d from a given node i of degree ki can be
approximated to be

Nd ∼
{
kic

d−1 for d > 0
1 for d = 0

The Eq. (7.25) is very close to the expression given by Eq. (7.20) where we
have substituted the branching ratio b = k− 1 with the average branching ratio

of the Poisson network b = 〈k(k−1)〉
〈k〉 = c.

Proposition 40. The average distance 〈d〉 = ` of a Poisson network with
average degree 〈k〉 = c can be approximated in the limit of large network sizes
N � 1 to

` ∼ lnN

ln c
(7.25)

Proof. We start from the expression given by Eq. (7.25) for the node at distance
d from a given node i of degree i. Assuming that the node i is choose at random
in the network we can evaluate the number of nodes at distance d > 0 from a
random node as

Nd ∼ kicd−1 ∼ cd. (7.26)

Therefore we can evaluate the number of nodes at distance d ≤ d′ from a random
node as

Nd≤d′ = 1 +

d′∑
d=1

Nc =

d′∑
d=0

cd =
cd
′+1 − 1

c− 1
. (7.27)

The average distance between the nodes of the network can be estimated by
imposing that the number of nodes at distance d ≤ ` must be equal to the total
number of nodes N . Therefore we have

N =
c`+1 − 1

c− 1

c`+1 = 1 +N(c− 1)

`+ 1 =
ln[1 +N(c− 1)]

ln c
. (7.28)
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It follows that in the limit of large network sizes N � 1

` ∼ lnN

ln c
. (7.29)

Here in the following we give the following proposition regarding the diameter
of random networks without proof.

Proposition 41. The diameter D of a Poisson network with average degree
〈k〉 = c can be show to have the same scaling behaviour of the average distance
in the large network limit N � 1,i.e.

D ∼ lnN

ln c
(7.30)

7.6.2 Clustering coefficient of a Poisson network

The Poisson network has the small-world distance property but is not a a strickly
speaking small-world network. In fact it has a small clustering coefficient.

Proposition 42. The Watts and Strogatz clustering coefficient CWS of a ran-
dom network in the G(N, p) ensemble is in the large network limit is given by

CWS = p (7.31)

Proof. Given a node i of a random network in the G(N, p) ensemble, let ki
indicates its degree. The number of distinct pair of neighbours nodes is given
by 1

2ki(ki − 1). Each of these pair of nodes is connected with probability p.
Therefore the average number of triangles passing through node i is given by
p 1
2ki(ki − 1). Therefore we have that in average the local clustering coefficient

of a node in the random network is given by

〈Ci〉 =
p 1
2ki(ki − 1)
1
2ki(ki − 1)

= p. (7.32)

In the large network limit we have therefore

CWS = p. (7.33)

Proposition 43. In a Poisson random network with average degree 〈k〉 = c the
Watts and Strogatz clustering coefficient in the large network limit is given by

CWS = p =
c

N
(7.34)

Therefore on Poisson networks the Watts and Strogatz goes not have a high
clustering coefficient and therefore is not a small world network. Also we observe
that the clustering coefficient is vanishing in the large network limit N →∞.
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Figure 7.5: The small-world network model. Starting from a regular one di-
mensional lattice of degree k, links are rewired with probability p. For p = 0
the network is a regular one dimensional lattice of degree k. For p = 1 the
network is a random network in the G(N, k/2N) ensemble. For a large value of
intermediate values of p the network is small world.

7.7 The Small-World Network Model (E)

In regular lattices, random short-cuts can reduce significantly the average dis-
tance in the network keeping the high the clustering coefficient. This has been
the simple, clear intuition beyond the Small-World model proposed by D.J.
Watts and S. Strogatz in 1998.

Definition 76. A Small-World model is obtained starting from a regular one
dimensional lattice with nodes of degree k. In other words we start from a lattice
of N nodes, place on a ring and such that every node is linked to the k nearest
neighbour on the ring. Each link of the network is removed from the lattice with
probability p and its two ends are attached to randomly chosen distinct nodes of
the network.

In figure 7.5 we plot networks generated by the small world network model
for different value of the rewiring probability p. The model has different regimes

• Case p = 0
The network is a regular one dimensional lattice with nodes of degree k.
In this case the clustering coefficient CWS is finite in the large N limit,
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and is given by Eq. (7.11) that we rewrite here for convenience

CWS =
3

4

k − 2

k − 1
, (7.35)

i.e. the network has high clustering coefficient. This network has average
distance ` given by Eq. (7.18)

` ∼ N

k
. (7.36)

• Case p = 1
All the links are randomly attached to the nodes of the network: the net-
work is a random network in the G(N,L) with L = k/2N links. The
clustering coefficient CWS and the average distance ` of the random net-
work in the G(N, kN/2) network are the same of the ones of a Poisson
network of average degree 〈k〉 = k. Therefore we have a small clustering
coefficient

Crand =
〈k〉
N
, (7.37)

and a small average distance ` given by

`rand ∼
lnN

ln〈k〉
. (7.38)

• In a wide range of values of p The network is a small-world network ,
i.e. it has at the same time high clustering coefficient and small average
distance `. In order to show this, in Figure 7.6 the clustering coefficient
C and the average shortest distance ` are shown as a function of p for a
small world network model with 〈k〉 = 4, N = 103. The data are averaged
over 100 realizations.

The Small-World network capture a basic mechanism for shortening consider-
ably the average distances starting from spatial, local interactions, and can be
used to model a large variety of networks. Nevertheless, many small world net-
works display large fluctuations in the degrees of their nodes, while the degree
distribution of the Small-World model does not display such large fluctuations.
In Figure 7.7 we plot σ =

√
〈k2〉 − 〈k〉2 for the small-world network as a func-

tion of p showing that σ is finite for every value of p. In fact the maximal value
of σ is reached for p = 1 where σ =

√
k is the standard deviation of a random

Poisson network with average degree 〈k〉 = k.
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Figure 7.6: The average distance `(p) normalized by the value `(p = 0) and the
clustering coefficient CWS(p) normalized by the value CWS(p = 0) for the small
world network model with 〈k〉 = 4, N = 103. The data are averaged over 100
realizations. There is a wide range of values of p in which the network is small-
world displaying at the same time small average distance and high clustering
coefficient.
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10-3 10-2 10-1 100

 p
0

0.5

1

1.5

2

σ

Figure 7.7: The standard deviation of the degree distribution σ =
√
〈k2〉 − 〈k〉2

as a function of the rewiring probability p for a small world network model with
〈k〉 = 4, N = 103. The data are averaged over 100 realizations. The standard
deviation σ has a maximum for p = 1 where it reaches the Poisson random value
σ =
√
k.



Chapter 8

The configuration model
and the Molloy-Reed
condition

8.1 The configuration model (E)

Definition 77. The configuration model is the set (or ensemble) of networks
with N nodes and with given degree sequence {ki} = (k1, k2, k3, . . . kN ) where ki
is the degree of node i = 1, 2 . . . , N .

A network in the configuration model can be generated by the following
recursive procedure: Given a degree sequence {ki} = (k1, k2, . . . , kN ) with an
even

∑
j kj

• Step a)
We place ki stubs on each node i of the network.

• Step b)
We match each stub of the network with another stub of the network.

• Step c)
We repeat step b) until all the stubs of the network are matched. Step d)
If the network constructed in this way contains multiedges and tadpoles
repeat step b and step c.

8.2 Uncorrelated networks (E)

Definition 78. A network with degree distribution {ki} is uncorrelated if the
probability pij that a node i is connected to a node j is given by

pij =
kikj
〈k〉N

, (8.1)

119



120 CHAPTER 8. G. BIANCONI:COMPLEX NETWORKS

Step	
  a	
  

Step	
  b	
  and	
  c	
   Step	
  b	
  and	
  c	
  

Figure 8.1: Construction of a network in the configuration model. In step a) the
ki stubs are placed on each node i of the network. In step b) and c) all the stubs
are repeatedly matched until the full network if formed. In the figure we show
two possible networks generated by the configuration model starting from the
same degree distribution. Starting from the degree distribution in this figure,
one can construct 6 different simple networks, here we just show two network
realizations.
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for any pair of nodes (i, j) of the network. Moreover, the probability qij that one
link of node i is linked to a node j is given by

qij =
kj
〈k〉N

(8.2)

Definition 79. The structural cutoff of a network is a maximal allowed degree
given by

K =
√
〈k〉N. (8.3)

Therefore if a network has a structural cutoff we have

ki ≤ K =
√
〈k〉N (8.4)

for every node i = 1, 2 . . . , N .

Proposition 44. The networks generated with the configuration model are un-
correlated if and only if they have a structural cutoff.

Proof. Here we will prove only the necessary condition, i.e. a necessary condition
for generating uncorrelated networks with the configuration model is that the
degree sequence has a structural cutoff. In fact if the networks are uncorrelated
then the probability that a node i is connected to a node j is given by

pij =
kikj
〈k〉N

. (8.5)

by putting ki = K and kj = K where K is the maximal degree of the network
and imposing that pij is a probability, i.e. pij ≤ 1 we have

pij =
K2

〈k〉N
≤ 1, (8.6)

which imply that the maximal degree must be the structural cutoff

K ≤
√
〈k〉N. (8.7)

One can also prove that the presence of a structural cutoff in the networks is a
sufficient condition for generating uncorrelated networks with the configuration
model.

Proposition 45. In an uncorrelated network the probability q(k) that by fol-
lowing a link in the network we reach a node of degree k is given by

q(k) =
k

〈k〉
P (k). (8.8)
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Proof. In fact, assume that we follow a link of a generic node i of the network,
the probability qij that we reach a node j with degree kj = k is given by

qij =
k

〈k〉N
, (8.9)

and only depend on the degree kj = k of the target node. The number of nodes
with the degree k is given by NP (k).
Therefore the probability q(k) that by following a link of the network we reach
a node of degree k is given by

q(k) =
k

〈k〉N
NP (k) =

k

〈k〉
P (k). (8.10)

Proposition 46. The average degree of the neighbours of a random node in the
configuration model with structural cut-off is given by∑

k

kq(k) =
〈k2〉
〈k〉

. (8.11)

Proof. In fact, q(k) is the probability that a neighbour of a node has degree k,
therefore the average degree of a neighbour of a node is∑

k

kq(k) =
∑
k

k
k

〈k〉
P (k) =

〈k2〉
〈k〉

. (8.12)

Note that in such networks the neighbours of a random node have in average
more links that the starting node. This phenomenon can be expressed by the
sentence that applies to social networks: Your friends have more friends than
you do! Or, more properly speaking, given a random person in a social network
His/her friends have more friends than him/her! In fact let us assume that the
social network is uncorrelated (note that this assumption does not hold since
social networks tend to have hubs more likely connected to hubs than to nodes
of small degree). In this network the average number of friends of a node is

given by 〈k
2〉
〈k〉 , while the average degree of a random node is given by 〈k〉. But

we always have

〈k2〉
〈k〉

> 〈k〉, (8.13)

as soon as the network is not a regular network with all the nodes having the
same degree. In fact we have always

〈k2〉 − 〈k〉2 =
〈
(k − 〈k〉)2

〉
≥ 0, (8.14)

where the equality holds only if all the nodes has the same degree.
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8.3 Birth of the giant component and Molloy-
Reed criterion (NE)

We have already seen that the giant component emerges in Poisson networks at
a critical value of the average degree 〈k〉 = c = 1. Poisson networks with average
degree c < 1 do not have a giant component, i.e. the fraction of nodes in the
giant component is zero in the limit N → ∞ (S = 0) while Poisson networks
with average degree c > 1 has a giant component and in these networks the
fraction of nodes S in the giant component is positive (S > 0). This drastic
change in the structure of the network, is characterized with the same tools used
to study phase transitions in condensed matter, (ex. the transition between a
ferromagnetic and a paramagnetic material as a function of the temperature).
In this chapter we will study how to characterize the emergence of the giant
component in sparse networks with generic degree distribution P (k) and finite
average degree 〈k〉. Interestingly we will show that the main parameter that
determines whether or not there is a giant component in the network is not

given in general by the average degree but it is given by 〈k(k−1)〉〈k〉 . We start by

defining a recursive criterion for determining is a node of the network is in the
giant component. Applying this definition we will first find the equation for the
fraction S of nodes in the giant component of a network with degree distribution
P (k), and secondly we will show that a network has a giant component S > 0 if

and only if 〈k(k−1)〉〈k〉 > 1 or, equivalently if and only if
〈k2〉
〈k〉 > 2 which constituted

the so called Molloy-Reed criterion.

Definition 80. A node is in the giant component of the network if, at least one
of the nodes reached by following one of its links is also in the giant component
of the network. A node reached by following a link is in the giant component if
at least one of its remaining links reaches a node in the the giant component.

Proposition 47. The probability S′ that by following a link, in a locally tree-like
network with degree distribution P (k) we reach a node in the giant component,
needs to satisfy the following equation:

S′ = 1−
∑
k

k

〈k〉
P (k)(1− S′)k−1. (8.15)

The fraction of nodes S that are in the giant component of the same network is
given by

S = 1−
∑
k

P (k)(1− S′)k, (8.16)

where S′ is the solution of Eq. (??).

Proof. To find the equation Eq. (8.15) for S′ we use the recursive rule for
determining is a node reached by following a link in the network is in the giant
component. By following a link we reach a node of degree k with probability
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qk = kP (k)/〈k〉, the probability that at least one of the remaining k − 1 links
of this node reach a node in the giant component is

1− (1− S′)k−1, (8.17)

where we have assumed that the network is locally tree-like and neglected any
possible correlations between the fact that two or more neighbours of the same
node are/(are not) in the giant component. Therefore summing over all the
possible degrees k of the node reached by following a link, we have

S′ =
∑
k

k

〈k〉
P (k)

[
1− (1− S′)k−1

]
S′ = 1−

∑
k

k

〈k〉
P (k)(1− S′)k−1. (8.18)

To find the expression for S, the fraction of nodes in the giant component of
the network, we first notice that S indicates also the probability that a random
node is in the giant component, when we consider the limit N →∞. A random
node of the network has degree k with probability P (k). The probability that a
node of degree k is not in the giant component is given by the probability that
all this links reach nodes that are not in the giant component, therefore we have

1− S =
∑
k

P (k)(1− S′)k. (8.19)

Finally the fraction S of nodes in the giant component can be written as

S = 1−
∑
k

P (k)(1− S′)k. (8.20)

Proposition 48. The Molloy-Reed criterion for having a giant component is
the following: a sparse random network with degree distribution P (k) has a giant
component if and only if

〈k2〉
〈k〉

> 2. (8.21)

Proof. The fraction of nodes S in the giant component satisfies Eq. (8.16), i.e.

S = 1−
∑
k

P (k)(1− S′)k, (8.22)

therefore there is a giant component in the network (S > 0) if and only if S′ > 0.
The probability S′ satisfies Eq. (8.15) given by

S′ = 1−
∑
k

k

〈k〉
P (k)(1− S′)k−1. (8.23)
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This equation is always satisfied for S′ = 0, but, depending on the properties
of the degree distribution p(k) it can have another non-trivial solution S′ > 0.
Unfortunately this equation cannot be solved analytically for arbitrary value of
S′. For this reason we will make use of some graphical argument. The solution
of Eq. (8.15) can be seen as the value of S′ where the two functions y = f(S′)
with f(S′) = S′ and y = g(S′) with g(S′) = 1−

∑
k

k
〈k〉P (k)(1− S′)k−1 cross.

Since the function g(S′) is an increasing function of S′, with maximum slope
at S′ = 0, the non trivial solution S′ > 0 emerges when the functions y = f(S′)
and y = g(S′) are tangent to each other at S′ = 0.

In order to detect when this new solution emerges, we impose therefore

dS′

dS′

∣∣∣∣
S′=0

=
d(1−

∑
k

k
〈k〉P (k)(1− S′)k−1)

dS′

∣∣∣∣∣
S′=0

,

1 =
∑
k

k(k − 1)

〈k〉
P (k)

∣∣∣∣∣
S′=0

,

1 =
〈k(k − 1)〉
〈k〉

(8.24)

Therefore a random network generated with the configuration model will have
a giant component if an only if

〈k(k − 1)〉
〈k〉

> 1, (8.25)

or

〈k2〉
〈k〉

> 2. (8.26)

8.3.1 Giant component in Poisson and scale-free networks

Proposition 49. The Molloy-Reed condition for having a giant component in
a Poisson network reduced to the already obtained necessary and sufficient con-
dition

c = 〈k〉 > 1. (8.27)

Proof. In fact for a Poisson degree distribution P (k) = cke−c/k! we have 〈k(k − 1)〉 =
c2 and 〈k〉 = c. Therefore the Molloy-Reed condition can be written as

〈k(k − 1)〉
〈k〉

> 1

c2

c
= c = 〈k〉 > 1. (8.28)
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Figure 8.2: The graphical solution of Eq. (8.15).

In a Poisson network we found a critical value of the average degree 〈k〉 =
c = 1 necessary for having a giant component in the network. In scale-free
network the situation is significantly different. In fact it is not the average
degree that is determining if the network has a giant component, but the ratio
〈k(k − 1)〉/〈k〉. As we will see then scale-free networks with γ ∈ (2, 3] have
always a non vanishing giant component independently on their average degree.
This is one of the most important signals that these structures are also more
robust to random damage.

Proposition 50. Uncorrelated sparse scale-free networks with degree distribu-
tion P (k) = Ck−γ and γ ∈ (2, 3] have always a giant component in the limit
N →∞.

Proof. Let us consider uncorrelated power-law networks with degree distribution
P (k) = Ck−γ with γ > 2 and k ∈ [kmin,

√
〈k〉N ]. For these network the average

degree 〈k〉 is finite in the limit N →∞. Let us evaluate 〈k2〉 in the continuous
limit approximation. We have

〈k2〉 =

∫ K

kmin

dkk2P (k) = C

∫ K

kmin

dkk2−γ

=

{
C 1

3−γ

[
K3−γ − k3−γmin

]
for γ 6= 3

C [lnK − ln kmin] for γ = 3

Using the expression for the structural cutoff K =
√
〈k〉N and evaluating 〈k2〉

at the leading term for N � 1 we get

〈
k2
〉

=


C 1

3−γ
[
(〈k〉N)(3−γ)/2

]
for γ < 3

C
2 [ln〈k〉N ] for γ = 3

C 1
γ−3

[
k
(3−γ)
min

]
for γ > 3
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Therefore for γ ∈ (2, 3], the ratio 〈k
2〉
〈k〉 diverges for N →∞ and the Molloy-Reed

condition 〈k
2〉
〈k〉 > 2 is always satisfied. This means that a scale-free network has

always a giant component, independently on the value of the average degree
〈k〉 (fixed by the power-law exponent γ and the minimal degree of the network
kmin).

8.4 Local clustering coefficient of the uncorre-
lated configuration model (E)

The local clustering coefficient of a node of a network is the probability that
two nearest neighbours of a node are connected together. In an uncorrelated
network the average local clustering coefficient is independent on the degree of
the starting node. In fact the average local clustering coefficient can be easily
calculated.

Proposition 51. The average local clustering coefficient of a node in a uncor-
related network is equal to the Watts-and Strogatz clustering coefficient and is
given by

CWS =
1

〈k〉N

(
〈k(k − 1)〉
〈k〉

)2

(8.29)

Proof. Suppose that two nearest neighbours of a given node i are called node r
and node m. Node r has degree k` with probability q(kr), node m has degree km
with probability q(km). These two nodes have each one link linked to the node i.
Therefore node r has kr − 1 remaining links and node m has km − 1 remaining
links. In the configuration model stubs are randomly matched, therefore the
probability that node r and node m are connected, given that they are both
connected to node i is given by

(kr − 1)(km − 1)

〈k〉N
. (8.30)

If we want to evaluate the average clustering coefficient of a node in this network
(equal to the Watts and Strogatz clustering coefficient CWS of the network) we
have to evaluate the probability that any two nearest neighbours of a generic
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node i are connected therefore we have

CWS =
∑
kr,km

q(kr)q(km)
(kr − 1)(km − 1)

〈k〉N

=
∑
kr,km

kr
〈k〉

P (kr)
km)

〈k〉
P (km)

(kr − 1)(km − 1)

〈k〉N
=

=
1

〈k〉N

(∑
k

k(k − 1)

〈k〉
P (k)

)2

=
1

〈k〉N

(
〈k(k − 1)〉
〈k〉

)2

(8.31)

8.5 Average distance of an uncorrelated network
(E)

Let us consider uncorrelated networks that are locally tree-like. In this networks
the average number of short loops is finite in the limit N → ∞. Therefore we
must have 〈k(k − 1)〉/〈k〉 finite in the limit N →∞. In this case we can evaluate
the average distance of the network following the same procedure that we have
used for random networks and Cayley trees in chapter 5. In particular we will
evaluate the average branching ratio of a node reached by following a random
link of the network, and we will express the typical distance in the network as
a function of this average branching ratio.

Definition 81. The branching ratio bk of a node of degree k is given by

bk = (k − 1), (8.32)

expressing the number of remaining links of the node if we reach the node by
following a link.

Let us consider the average branching ratio of nodes reached by following a
link satisfying the following definition

Definition 82. The average branching ratio b of a node reached by following a
links is given by

b =
∑
k

q(k)bk =
∑
k

k(k − 1)

〈k〉
P (k) =

〈k(k − 1)〉
〈k〉

, (8.33)

expressing the typical number of remaining links of a random node reached by
following a link.
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When 〈k(k − 1)〉 is constant in the large network limit the networks gener-
ated with the configuration model have a negligible clustering coeffiencient and
are locally tree-like. In this case it is possible to evaluate the average distance
between the nodes of the network by approximating the number of nodes Nd at
distance d from a given node i as

Nd =

{
ki

(
〈k(k−1)〉
〈k〉

)d−1
for d ≥ 1

0 for d = 0.

Assuming that node i is taken randomly we can approximate the number of
nodes at distance d from a random node as

N̂d =

{
〈k〉
(
〈k(k−1)〉
〈k〉

)d−1
for d ≥ 1

0 for d = 0.

Notice that for a Poisson network with average degree 〈k〉 = c we have

〈k(k − 1)〉
〈k〉

= c. (8.34)

Therefore

N̂d = cd. (8.35)

In general, as long as 〈k(k − 1)〉/〈k〉 is finite in the large network limit we have
that the average distance in the network scales like

` =
ln(N)

ln b
. (8.36)

It has therefore the small-world distance property. Actually it can also be shown
that scale-free networks with 〈k(k − 1)〉 diverging in the large network limit have
a typical distance that scales like

` ' O(ln lnN) (8.37)

for γ ∈ (2, 3).
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