The questions on this sheet are based on the material on first returns, recurrence and transience from Week 5 and 6 lectures.

1. Consider the Markov chain on state space $S = \{1, 2, 3\}$ with transition matrix

$$\left(\begin{array}{ccc}
0 & 1/5 & 4/5 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)$$

- (a) Explain why this chain has a unique equilibrium distribution but no limiting distribution.
- (b) For each state $s \in S$ calculate directly the distribution of R_s (the time of first return to s) and $\mathbb{E}(R_s)$.
- (c) Use part (b) (and a Theorem from the notes) to write down the equilibrium distribution for the chain.
- (d) Check that the answer you get is the same as that obtained by the usual method of solving the appropriate matrix equation.
- 2. Consider the Markov chain on state space $S = \{0, 1, 2, ...\}$ with transition probabilities $p_{i,i+1} = \frac{i+1}{i+2}$, $p_{i,0} = \frac{1}{i+2}$ for $i \ge 0$ (all others being 0).
 - (a) Calculate $f_0^{(t)}$ and f_0 for this chain and deduce from this that state 0 is recurrent.
 - (b) Calculate $\mathbb{E}(R_0)$ and decide whether state 0 is positive recurrent or null recurrent.
 - (c) Is state 1000 transient, null recurrent or positive recurrent? Why?
 - (d) How does this chain compare with the success-runs chain? (Example 23 from the notes)

Random Processes Problem Sheet 6

3. Consider the biased random walk with $S = \mathbb{N}$ with reflecting boundary in which the transition probabilities are

$$p_{0,1} = 1$$

 $p_{i,i+1} = 1/3$ for all $i \ge 1$
 $p_{i,i-1} = 2/3$ for all $i \ge 1$
 $p_{i,j} = 0$ for all other i, j

(a) Find the unique equilibrium distribution for this chain.

[Hint: Write down the equations for w_j ; find an expression for the first few; guess the general solution; check that your guess is indeed a solution.]

- (b) Is the chain transient, null recurrent or positive recurrent?
- (c) If $X_0 = 0$, what is the expectation of $\min\{t \ge 1 : X_t = 0\}$?
- 4. Let (X_0, X_1, \ldots) be the Markov chain on state space $S = \mathbb{Z}$ and transition probabilities

$$\begin{aligned} p_{i,-i} &= p_{i,i-1} = 1/2 & \text{if } i > 0 \text{ is even} \\ p_{i,i-1} &= p_{i,i} = p_{i,i+1} = 1/3 & \text{if } i > 0 \text{ is odd} \\ p_{i,i+1} &= 2/3 & \text{if } i < 0 \\ p_{i,i-1} &= 1/3 & \text{if } i < 0 \\ p_{0,0} &= 1 \end{aligned}$$

- (a) Sketch the transition graph.
- (b) Identify the communicating classes.
- (c) For each communicating class decide whether it is transient, null recurrent or positive recurrent. Justify your answers briefly.

Random Processes Problem Sheet 6

5. [Challenge Question] If $s \in S$ is a state of a Markov chain, we say that s is 2-periodic if $p_{ss}^{(t)} = 0$ for all odd t.

- (a) Show that 2-periodicity is a class property (that is if i is 2-periodic and j is a element of the same communicating class as i then j is 2-periodic).
- (b) Can you find a Markov chain which contains both a loop (that is a state s with $p_{ss} > 0$) and a 2-periodic state.
- (c) Can you find an irreducible Markov chain which contains both a loop and a 2-periodic state?

Some recent exam questions on the material in Week 6 include:

- Main Exam Period 2018. Question 5(c,d,e)
- Main Exam Period 2019. Question 5
- January 2022 Exam. Question 2(a,e)
- January 2023 Exam. Question 1(e,f)

Robert Johnson r.johnson@qmul.ac.uk