Random Processes - 2023/24

The questions on this sheet are based on the material on limiting and equilibrium from Week 3 and 4 lectures. Question 3 is about the proof of a small result we used in lectures. The other questions are mainly about checking the properties of being irreducible and regular, and computing equilibrium and limiting distributions.

1. Look back at Question 3 on Problem Sheet 3. For each of the parts (a,b,c,d,e) decide whether the corresponding Markov chain is irreducible, regular, or neither. Which of them have a limiting distribution and what is it?
2. Let $\left(X_{0}, X_{1}, \ldots\right)$ be the Markov chain on state space $\{1,2,3,4,5\}$ with transition matrix:

$$
\left(\begin{array}{ccccc}
p & 0 & 0 & 0 & 1-p \\
0 & 0 & 0 & 0 & 1 \\
1 / 4 & 3 / 4 & 0 & 0 & 0 \\
3 / 4 & 1 / 4 & 0 & 0 & 0 \\
0 & 0 & 1 / 2 & 1 / 2 & 0
\end{array}\right)
$$

(a) For which values of p is this Markov chain irreducible?
(b) For which values of p is this Markov chain regular?
(c) Find the limiting distribution for this Markov chain when $p=1 / 2$ explaining your method carefully.
(d) Suppose that the Markov chain of part (c) represents the position of a robot moving around an environment with 5 regions, where X_{i} is the region it is in i minutes after being placed in the environment. Describe what the limiting distribution means in this context as you would explain it to a non-mathematician. Your answer should consist of one or two sentences with no mathematical terminology or symbols.
3.
(a) Prove that if an irreducible Markov chain on a finite state space has a state i with $p_{i i}>0$ then it is regular.
(b) Does the same result hold if we allow the state space to be infinite? Justify your answer.
4. I have n balls distributed between 2 buckets. At each time step I pick one of the balls at random (each being picked with probability $1 / n$) and move it from whichever bucket it is currently in to the other bucket.
(a) Describe a Markov chain which models this process.
(b) Give the transition graph and transition matrix when $n=4$.
(c) Does the Markov chain in part (a) have a limiting distribution?
(d) Does it have an equilibrium distribution?
(e) If your answer to either of (c) or (d) was 'yes', what is that distribution when $n=4$?
(f) How do your answers to (c) and (d) change if instead of moving our randomly chosen ball, we take it out and put it back in a random bucket (choosing each one with probability $1 / 2$).

Some recent exam questions on the material in Weeks 3 and 4 include:

- Main Exam Period 2019. Questions 1 and 2
- January 2020 Exam. Question 2(c,d)
- January 2021 Exam. Question 1
- January 2022 Exam. Question 1(b-e)
- January 2023 Exam. Question 3(a-c,e-g)

