

Complex Networks (MTH6142) Formative Assignment 4

• 1. Degree distribution of random graphs

A random graph ensemble $\mathbb{G}(N,p)$ with $p=\frac{c}{N-1}$ has a binomial degree distribution

$$P_B(k) = \binom{N-1}{k} p^k (1-p)^{N-1-k},$$
 (1)

that in the limit of $N \gg 1$ can be approximated by a Poisson distribution $P_P(k)$ given by

$$P_P(k) = \frac{1}{k!} c^k e^{-c}.$$
 (2)

(a) Calculate the generating function

$$G_B(x) = \sum_{k=0}^{N-1} P_B(k) x^k$$
 (3)

for the binomial degree distribution $P_B(k)$ given by Eq. (1).

- (b) Using the properties of the generating functions, evaluate the first moment $\langle k \rangle$ and the second moment $\langle k(k-1) \rangle$ of the degree distribution $P_B(k)$ given by Eq. (1).
- (c) Calculate the generating function

$$G_P(x) = \sum_{k=0}^{\infty} P_P(k) x^k \tag{4}$$

for the Poisson degree distribution $P_P(k)$ given by Eq. (2).

- (d) Using the properties of the generating functions, evaluate the first moment $\langle k \rangle$ and the second moment $\langle k(k-1) \rangle$ of the degree distribution $P_P(k)$ given by Eq. (2).
- (e) Show that the first $\langle k \rangle$ and second moment $\langle k(k-1) \rangle$ of the binomial distribution $P_B(k)$ obtained in (b) are the same as the first $\langle k \rangle$ and second $\langle k(k-1) \rangle$ moments of the Poisson distribution $P_P(k)$ obtained in (d), as long as $p = \frac{c}{N-1}$ with c constant and $N \to \infty$.

• 2. A given random network

Consider a random network in the ensemble $\mathbb{G}(N,p)$ with $N=4\times 10^6$ nodes and a linking probability $p=10^{-4}$.

- (a) Calculate the average degree $\langle k \rangle$ of this network.
- (b) Calculate the standard deviation σ_P using the approximated degree distribution given by Eq. (2).
- (c) Assume that you observe a node with degree 2×10^3 . How many standard deviations is this observation from the mean? Is this an expected observation or is this an unexpected observation?