
MTH6134 Statistical Modelling II

Exercises

Autumn 2023

Exercises built upon a list provided by Dr S Coad (formerly of QMUL).

1. Suppose that Yi ∼ Bin(ri, π) for i = 1, 2, . . . , n, all independent, where the ri are known.

1. Write down the likelihood for the data y1, . . . , yn.

2. Find the maximum likelihood estimator π̂ of π.

3. Prove that π̂ is an unbiased estimator of π.

2. Suppose you have the following binomial data from a single binomial sample: r = 15, y = 7.

1. Write down the likelihood for the data y.

2. Find the maximum likelihood estimator π̂ of π.

3. Using R, make a plot of the likelihood function L(π). Examine and describe this function.

4. Consider the following binomial sample: r = 105, y = 49. Repeat the computation of the
likelihood L(π), the maximum likelihood estimate π̂ and the plot of L(π). Compare the
results with those of the original data and comment.

3. Consider the following binomial data pairs (r, y): (60, 19), (70, 25), (30, 15), (40, 14), (20, 9).

1. Repeat the computations of steps 1-3 of the previous question (problem 2). In this case,
consider and analyze each data pair separately.

2. Analyze the data jointly, using the result of the problem 1.

3. Compare the results of the two analyses. Are the estimates that you obtained related?

4. Suppose that Yi ∼ Poisson(µ) for i = 1, 2, . . . , n, all independent.

1. Write down the likelihood for the data y1, . . . , yn.

2. Find the maximum likelihood estimator µ̂ of µ.

3. Prove that µ̂ is an unbiased estimator of µ.

5. The following count data 5, 1, 3, 5, 5, 4, 3, 2, are assumed to be a series of independent realiza-
tions of Poisson(µ).

1. Write down the likelihood for the data y1, . . . , yn.

2. Find the maximum likelihood estimator µ̂ of µ.

3. Plot the likelihood function L(µ) with R. Examine and describe this function.
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4. Now suppose that you have a sample of Poisson data with the same sample value ȳ as
with the data above, but with n = 16. Redo the plot of L(µ), compare with the first plot
and comment.

6. Consider the count data 47, 40, 46, 41, 40. Repeat the computations of items 1-3 of problem 5.

7. Suppose that Yi ∼ N(βxi, σ
2) for i = 1, 2, . . . , n, all independent, where xi is a known covariate.

1. Write down the likelihood for the data y1, . . . , yn.

2. Find the maximum likelihood estimators β̂ and σ̂2 of β and σ2.

3. Prove that β̂ is an unbiased estimator of β.

8. In this problem we study properties of the link function g(u) = log(u).

1. Determine the domain and range of g(u).

2. For which type of response is the link g(u) function most suitable?

3. Invert g(u) and compute directly the derivative of the inverse g−1(u), i.e. d
dug

−1(u).

4. Find out about the inverse function theorem. Use the inverse function theorem to compute
the derivative of the inverse g−1(u).

5. Repeat the steps and computations above for the following link functions:

(a) The identity link g(u) = u.

(b) The inverse quadratic link g(u) = u−2.

(c) The square root link g(u) = u−1/2 =
√
u.

(d) The logit link g(u) = log(u/(1− u)).

(e) The complementary log-log link g(u) = log(− log(1− u)).

(f) The Cauchy link g(u) = Φ−1(u), where Φ(u) = 1
2 + 1

π arctan(u).

(g) (Medium) The Gumbel link g(u) = Φ−1(u), where Φ(u) = exp(− exp(−u)) is the
cumulative Gumbel distribution. Discuss one potential disadvantage of this link.

(h) (Hard) The probit link g(u) = Φ−1(u), where Φ(u) is the cumulative distribution of
the standard normal random variable.

9. Suppose that Yi ∼ N(µ, σ2) for i = 1, 2, . . . , n, all independent,

1. Write down the likelihood for the data y1, . . . , yn. Hint: Try to reuse the equations in
lecture notes (ditto for the second item).

2. Determine analytically the maximum likelihood estimates.

3. Find the Fisher information matrix.

10. The observations 6.3, 4.2, 6.02, 4.32, 4.04, 3.95 are assumed to be independent realizations of
the normal model N(µ, σ2).

1. Using R, compute the likelihood estimates with formulæ µ̂ = ȳ and σ̂2 =
∑n

i=1(yi− ȳ)2/n.
2. Formulate the estimation of µ, σ like a linear regression in R and compute the estimates
µ̂, σ̂2. In other words, use the function lm and process its output.

11. The Federal Trade Commission measured the numbers of milligrammes of tar (x) and carbon
monoxide (y) per cigarette for all domestic filtered and mentholated cigarettes of length 100
millimetres. A sample of 12 brands yielded the following data:
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Brand x y

Capri 9 6
Carlton 4 6
Kent 14 14
Kool Milds 12 12
Marlboro Lights 10 12
Merit Ultras 5 7
Now 3 4
Salem 17 18
Triumph 6 8
True 7 8
Vantage 8 13
Virginia Slims 15 13

1. Calculate the least squares regression line for these data.

2. Plot the points and the least squares regression line on the same graph.

3. Find an unbiased estimate of σ2.

12. Consider the data on manatees in Practical 1. Use R to answer the questions below.

1. Produce a scatterplot of the data. Does the relationship between y and x seem to be
linear?

2. Fit a simple linear regression model to the data. Give the values of β̂0 and β̂1, and test
H0 : β1 = 0.

3. By examining the residual plots, comment on whether there is any reason to doubt the
assumptions of the model.

13. Suppose that Yi ∼ N(βxi, σ
2) for i = 1, 2, . . . , n, all independent, where xi is a known covariate.

1. Find the Fisher information matrix. Hint: Try to reuse the equations in the lecture notes.

2. State the asymptotic distributions of the maximum likelihood estimators β̂ and σ̂2 of β
and σ2.

3. Explain why the distribution of β̂ is exact.

14. Consider the manatees’ data again and a regression model that passes through the origin.

1. Explain in simple terms what does a model going through the origin imply for the mana-
tees’ data.

2. Using the data, compute with the help of R an estimate of the matrix V and then give
its inverse V −1 which is an estimation of the variance-covariance matrix for the model
parameters.

3. Briefly comment upon your results.

15. Consider the model Yi ∼ N(µ, µ2) for i = 1, 2, . . . , n, all independent,

1. Write down the likelihood for the data y1, . . . , yn.

2. Determine analytically the maximum likelihood estimate.

3. Find the Fisher information matrix.
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16. Suppose that Yi ∼ N(µi, σ
2
i ) for i = 1, 2, . . . , n, all independent, where µi = xiβ and the σi are

known.

1. Write down the likelihood for the data y1, . . . , yn.

2. Show that β̂ = (X⊤Σ−1X)−1X⊤Σ−1Y is the maximum likelihood estimator of β. Here
Σ = diag(σ21, . . . , σ

2
n).

3. Find the Fisher information matrix.

17. Consider the following data (-1,3.1), (-1,2.1), (0,5.4), (0,4.2), (1,6), (1,6), which is given as
pairs (xi, yi). Implement in R the results of the model Yi ∼ N(µi, σ

2
i ) for i = 1, 2, . . . , n,

all independent, where µi = β0 + β1xi. The σi are known as σ21 = σ22 = 1, σ23 = σ24 = 2,
σ25 = σ26 = 4.

In particular, compute the maximum likelihood estimate β̂ and its asymptotic variance-covariance
matrix.

18. Suppose that Yi ∼ Bin(ri, πi) for i = 1, 2, . . . , n, all independent, where the ri are known,
πi = β0 + β1xi and xi is a known covariate.

1. Write down the likelihood for the data y1, . . . , yn.

2. Obtain the likelihood equations.

3. Find the Fisher information matrix.

19. Suppose that Yi ∼ Poisson(µi) for i = 1, 2, . . . , n, all independent, where µi = β0 + β1xi and
xi is a known covariate.

1. Write down the likelihood for the data y1, . . . , yn.

2. Obtain the likelihood equations.

3. Find the Fisher information matrix.

20. Consider the data on diabetics in Practical 2. Use R to answer the questions below.

1. Produce scatterplots of y against each of the explanatory variables. Does y appear to be
linearly related to them?

2. Fit a multiple linear regression model to the full data. Give the values of the estimated
regression coefficients and test H0 : β1 = 0.

3. Remove x1 from the model. By examining the residual plots, comment on whether there
is any reason to doubt the assumptions of the reduced model.

21. Suppose that Yi ∼ Poisson(µ) for i = 1, 2, . . . , n, all independent, and consider testing H0 : µ =
µ0 against H1 : µ ̸= µ0, where µ0 is known.

1. Write down the restricted maximum likelihood estimate µ̂0 of µ under H0 and the maxi-
mum likelihood estimate µ̂.

2. Obtain the generalised likelihood ratio.

3. Use Wilks’ theorem to find the critical region of a test with approximate significance level
α for large n.

22. Consider the data 5, 1, 3, 5, 5, 4, 3, 2 which are assumed to be independent realizations of the
Poisson distribution with expectation µ. We want to test H0 : µ = µ0 with µ0 = 3.
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1. Obtain the numerical value of the generalised likelihood ratio Λ(y) and discuss about the
distribution of this statistic to perform the test H0 : µ = µ0.

2. Use Wilk’s theorem to test H0 : µ = µ0, perform the test and write your conclusions.

3. Using the normal approximation to the data, perform the test H0 : µ = µ0 and compare
with the earlier results.

23. Suppose for i = 1, 2, . . . , n, we have independent Yi ∼ Bin(ri, p), where ri is known. Using data
y1, . . . , yn, consider testing H0 : p = p0 against H1 : p ̸= p0, where p0 is known.

1. Write down the restricted maximum likelihood estimate p̂0 of p under H0 and the maxi-
mum likelihood estimate p̂.

2. Obtain the generalised likelihood ratio for this test.

3. Use Wilks’ theorem to find the critical region of a test with approximate significance level
α, for large n.

4. The following (25,10), (15,6), (30,10) are data pairs (ri, yi) from acceptance sampling in
textile industry. Apply your results to build the generalized likelihood ratio and use Wilks’
theorem with α = 0.05 to test H0 : p = 0.3.

24. Suppose that Y ∼ Bin(r, π), where r is known.

1. Show that this distribution is a member of the exponential family.

2. Explain why the distribution is in canonical form and write down the natural parameter.

3. Use the general results for E{a(Y )} and Var{a(Y )} to verify that E(Y ) = rπ and
Var(Y ) = rπ(1− π).

25. Suppose that Y ∼ N(µ, σ2), where σ2 is known.

1. Show that this distribution is a member of the exponential family.

2. Explain why the distribution is in canonical form and write down the natural parameter.

3. Use the general results for E{a(Y )} and Var{a(Y )} to verify that E(Y ) = µ and Var(Y ) =
σ2.

26. Consider a sequence of independent Bernoulli trials, where each trial has success probability
p. The number of failures observed until we obtain r successes is a negative binomial random
variable X ∼ NB(r, p) with probability mass function Pr(X = x) =

(
x+r−1

x

)
pr(1− p)x.

1. Show that this distribution is a member of the exponential family.

2. Is the distribution in canonical form? Which is the natural parameter?

3. Using exponential family results, show that E(X) = r(1− p)/p.

4. Consider data x1, x2, . . . , xn. Determine the maximum likelihood estimate p̂. Is this
estimator unbiased? Justify your answer.

5. Compute the Fisher information number for estimating p.

27. Consider the random variable Y ∼ Ber(p).

1. Show that this distribution is a member of the exponential family.

2. Determine if the distribution is in canonical form and write down the natural parameter.
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3. Use the general results for E{a(Y )} and Var{a(Y )} to determine that E(Y ) and Var(Y ).

28. Repeat the calculations of Exercise 27 for the following distributions: a) binomial, b) geometric,
c) exponential, d) gamma, e) lognormal and f) chi-squared.

29. Consider the mean µ = E(Y ) and variance σ2 = V (Y ) of the random variable Y ∼ Ber(p).
Determine if the variance is a function of the mean and if so, give its explicit formula σ2 = f(µ).

30. Repeat the calculations of Exercise 29 for the following distributions of the exponential family:
a) binomial, b) geometric, c) negative binomial, d) Poisson, e) exponential, f) chi-squared, g)
gamma and h) lognormal.

31. Suppose that Yi ∼ Bin(ri, πi) for i = 1, 2, . . . , n, all independent, where the ri are known,
log{πi/(1− πi)} = β0 + β1xi and xi is a known covariate.

1. Find the Fisher information matrix.

2. Obtain the asymptotic distributions of the maximum likelihood estimators β̂0 and β̂1 of
β0 and β1.

3. State the approximate standard errors of β̂0 and β̂1.

32. Suppose that the continuous random variables Y1, . . . , Yn have distributions depending on the
parameters θ1, . . . , θp and that their ranges do not depend on the parameters. Let L(θ;y) and
l(θ;y) denote the likelihood and log-likelihood of the parameter vector θ, respectively.

1. Show that
∂l(θ;y)

∂θj
=

1

L(θ;y)

∂L(θ;y)

∂θj
.

2. Prove that

E

{
∂l(θ;Y)

∂θj

}
= 0.

3. By differentiating the identity in part 1 with respect to θk, prove that

E

{
−∂

2l(θ;Y)

∂θj∂θk

}
= E

{
∂l(θ;Y)

∂θj

∂l(θ;Y)

∂θk

}
.

33. Consider the data on beetles in Practical 3. answer the questions below. Fit the logistic, probit
and extreme value models in R. Which of these provides the best description of the data?
Present the results in a clear and concise table.

34. Suppose that Yi ∼ Poisson(µi) for i = 1, 2, . . . , n, all independent, where log(µi) = β0 + β1xi
and xi is a known covariate.

1. Find the Fisher information matrix.

2. Obtain the asymptotic distributions of the maximum likelihood estimators β̂0 and β̂1 of
β0 and β1.

3. State the approximate standard errors of β̂0 and β̂1.

35. Suppose that Yi ∼ Bin(ri, πi) for i = 1, 2, . . . , n, all independent, where the ri are known,
log{πi/(1− πi)} = β0 + β1xi and xi is a known covariate.
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1. Show that the maximum likelihood estimate of πi in the maximal model is yi/ri.

2. Obtain the generalised likelihood ratio.

3. Use Wilks’ theorem to find the critical region of a test with approximate significance level
α for large n.

36. In lectures we have surveyed the logistic, probit and extreme value (complementary log-log)
links which are used for the analysis of proportions (binomial data). In principle, a link for
proportion data is any continuous function that transforms (0, 1) → R. For example, the probit
link Φ−1(·) is the inverse of the standard normal cumulative distribution function.

1. Do some research about the link using the inverse cauchy distribution; write its explicit
expression and show that it satisfies the transformation (0, 1) → R.

2. Plot the link transformation and compare with other links mentioned. Can you see some
advantages or drawbacks of the Cauchy?

3. Analyze the beetle data of Practical 3 using the link cauchit. Compare what you obtain
with the earlier results. Does it improve over these? Write your comments.

37. A researcher wishes to know if consumption of caffeine improves performance on a memory
test. There were 30 volunteers for each dose of caffeine (x), in milligrammes, and the number
of volunteers who achieved a grade A in the memory test (y) is recorded. Below are the results.

x 0 50 100 150 200 250 300 350 400 450 500
y 10 13 17 15 10 5 4 3 3 1 0

1. Fit a logistic regression model to the data. Give the values of the estimated regression
coefficients and assess the goodness of fit of the model.

2. Add x2 to the model. Is there evidence that this model is an improvement over the
two-parameter one?

3. Obtain the fitted values of the new model. Plot both the proportions and the fitted values
against the doses.

38. Suppose that Yi ∼ Poisson(µi) for i = 1, 2, . . . , n, all independent, where log(µi) = β0 + β1xi
and xi is a known covariate.

1. Show that the maximum likelihood estimate of µi in the maximal model is yi.

2. Obtain the generalised likelihood ratio.

3. Use Wilks’ theorem to find the critical region of a test with approximate significance level
α for large n.

39. Suppose that Yi ∼ N(βxi, σ
2) for i = 1, 2, . . . , n, all independent, where xi is a known covariate

and σ is known. The fitted values are µ̂i = β̂xi and the variance of Yi is V (µ̂i) = σ2, and we
have V (x) = σ2. .

1. Write down the Pearson residual ePi .

2. Find the transformation A(x).

3. Obtain the Anscombe residual eAi .
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40. In an experiment designed to assess the potency of two test preparations of an insecticide rela-
tive to a standard, 60 aphids were placed on each of 12 cabbage plants. The three insecticides
(w) were then applied in various doses (x), in milligrammes per litre of water, to each of four
plants. The number of aphids still alive after three days (y) is determined and the results are
as follows:

x 1.2 2.4 4.8 9.6 1.2 2.4 4.8 9.6 1.2 2.4 4.8 9.6
w 1 1 1 1 2 2 2 2 3 3 3 3
y 43 37 26 15 35 27 18 7 52 44 36 28

Analyse the data by fitting probit regression models in which the probit of the proportion of
aphids killed by the insecticide is related to the logarithm of the dose.

1. Plot the proportions against the logarithms of the dose by insecticide. What are your
conclusions?

2. By comparing the deviance for the model which allows a different intercept and slope
for each insecticide with that for one in which the slopes are the same, test whether the
regression lines are parallel.

3. Test whether there are differences between the insecticides.

41. Consider again the cloth data in Practical 6. Show that the estimate of the dispersion parameter
ψ is ψ̂ = 2.194.

42. The following relationships can be described by generalized linear models. For each one, identify
the response variable and the explanatory variables, select a probability distribution for the
response (justifying your choice) and write down the linear component.

1. The effect of age, sex, height, mean daily food intake and mean daily energy expenditure
on a person’s weight.

2. The proportions of laboratory mice that became infected after exposure to bacteria when
five different exposure levels are used and 20 mice are exposed at each level.

3. The relationship between the number of trips per week to the super- market for a household
and the number of people in the household, the household income and the distance to the
supermarket.

43. In a cross-sectional study of skin cancer, the site of the tumour and its histological type were
recorded for 400 patients. The contingency table below shows the number of patients (y) with
each combination of tumour type and site.

Site
Histological Type Head and Neck Trunk Extremities Total

Hutchinson’s melanotic freckle 22 2 10 34
Superficial spreading melanoma 16 54 115 185
Nodular 19 33 73 125
Indeterminate 11 17 28 56

Total 68 106 226 400

The null hypothesis is that tumour type and site are independent.
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1. Express the null hypothesis as a log-linear model, explaining your notation and any addi-
tional constraints.

2. Obtain the expected values under the null hypothesis. Compare these with the observed
values.

3. Find the deviance and the value of Pearson’s goodness-of-fit test statistic. What is your
conclusion?

44. In a prospective study on a new treatment for pneumonia, patients were randomly allocated
to two groups each of 40 patients. One group received the new treatment and the other the
standard one, and the responses were the time taken to recover. The contingency table below
shows the number of patients (y) with each combination of treatment and time taken to recover.

Time to Recover
Short Medium Long Total

Standard 6 15 19 40
New 10 21 9 40

The null hypothesis is that the time taken to recover is the same for each treatment group.

1. Express the null hypothesis as a log-linear model, explaining your notation and any addi-
tional constraints.

2. Obtain the expected values under the null hypothesis. Compare these with the observed
values.

3. Find the deviance and the value of Pearson’s goodness-of-fit test statistic. What is your
conclusion?

45. Suppose that Ti ∼ Exp(λi) for i = 1, 2, . . . , n, all independent. Consider model M1, in which
all the λi are parameters; and model M2 for which λ = λ1 = · · · = λn. That is, M1 and M2
are the maximal and the null models, respectively.

1. Derive the corresponding maximum likelihood estimates for M1 and M2.

2. Using your estimates, determine the maximum value of the (log) likelihood in each case,
i.e. l̂max = l̂M1 = l(λ̂1, . . . , λ̂n; y) and l̂null = l̂M2 = l(λ̂; y).

3. Derive an expression for the Fisher information matrix for the parameters in each of M1
and M2, and write formulæ for confidence intervals for parameters estimates in each case.

4. Repeat all the computations above for the case when Ti ∼ Exp(θi). Your analysis will
consider models 1 and 2. Compare which results and comment on the similarities when
they appear. Hint. When using Exp(λi) in the first part of this problem, you will use the
density fT (t) = λi exp(−λit) for t ≥ 0, while for Exp(θi), you’ll use fT (t) = θ−1

i exp(−t/θi)
for t ≥ 0. In both cases the density is zero for negative t.

46. The following values are lifetimes of electronic components: 1.86, 12.96, 13.74, 8.57, 2.54. Using
the results of Exercise 45 or otherwise,

1. Plot the likelihood function of the data under the model Ti ∼ Exp(λ). Do another plot of
the likelihood using the model Ti ∼ Exp(θ).

2. Give confidence intervals for each case. Use α = 0.05.
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47. Suppose that Ti ∼ Exp(λi) for i = 1, 2, . . . , n, all independent, where λi = βxi and xi is a
known covariate.

1. Write down the likelihood for the data t1, . . . , tn.

2. Show that the maximum likelihood estimator of β is β̂ = n/
∑n

i=1 xiTi.

3. Find the Fisher information.

48. The break strength ti in MPa was recorded for n = 5 industrial ceramic components. It
is assumed that the distribution of strength is associated with porosity index xi, which is a
quantity controlled in the manufacturing process. The data is (1,6.798), (3,21.223), (3,1.873),
(5,0.1), (5,0.398), which is given as pairs (xi, ti).

1. Using the model of Exercise 47, compute the maximum likelihood estimate of β.

2. Compute its observed Fisher information.

3. Using your results and α = 0.05, give a confidence interval for β̂.

49. Suppose that the survival time T > 0 of a patient has a Weibull distribution with probability
density function

f(t) = αλtα−1 exp(−λtα),

where α > 0 and λ > 0.

1. Show that the survivor function is S(t) = exp(−λtα).
2. Obtain the hazard function.

3. Explain how the hazard function behaves for different values of α.

50. Using R, plot the hazard function for the Weibull distribution considering the scale parameter
λ = 1 and the the following cases for the shape parameter α = 0.25, 0.5, 1, 1.5, 3.

51. Consider a set of censored life times observations (δi, ti) for i = 1, . . . , n. Here δi indicates
censoring, i.e. if δi = 1 we observed Ti = ti and if δi = 0 then we had Ti > ti. Assume that the
times ti follow an exponential distribution.

1. Using the null model, derive an expression for the mle of λ.

2. Compute the Fisher information number and by plugging-in the mle λ̂, give a formula for
the observed Fisher information.

3. Using the earlier results give a formula for the estimated standard error of λ̂ and for a
100(1− α) confidence interval for λ̂.

52. Consider the data (1,0.62), (0,4.32), (1,4.58), (1,2.86), (1,0.85), (0,5.28), (1,0.1), (1,2.27),
(1,21.22), (0,1.87), where the pairs are (δi, ti) as above. Using the results of Exercise 51,
estimate λ, compute its estimated variance and give a confidence interval for λ̂ using α = 0.05.

53. Consider the data (1,63.67), (0,5.62), (1,0.5), (1,1.99), (1,10.09), (0,13.44), (1,41.13), (1,28.24),
(0,39.36), (1,17.59), (1,15.98), (0,13.05), where the pairs are (δi, ti) as above. Using the results
of Exercise 51, estimate λ, compute its estimated variance and give a confidence interval for λ̂
using α = 0.05.
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