
Why is survival modelling different from linear regression modelling? 

We explore National Life Tables data from the Office of National Statistics (2018 – 2020). The full 

dataset is available at 

https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpectancie

s/datasets/nationallifetablesunitedkingdomreferencetables and on QM Plus 

We import the data and calculate qx 

> NationalLifeTables2020 <- read.csv("…/NationalLifeTables2020.csv") 

> x <- NationalLifeTables2020$age 

> lx <- NationalLifeTables2020$lx 

> dx <- NationalLifeTables2020$dx 

> qx = dx / lx 

First, we look for a simple linear regression model of qx on age x 

> model1 <- lm(qx ~ x) 

> summary(model1) 

Call: 

lm(formula = qx ~ x) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-0.06815 -0.05007 -0.01187  0.03141  0.24061  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|) 

(Intercept) -0.060781   0.012617  -4.817 5.25e-06 

x            0.002107   0.000218   9.666 5.85e-16 

                

(Intercept) *** 

x           *** 

--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.06387 on 99 degrees of freedom 

https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpectancies/datasets/nationallifetablesunitedkingdomreferencetables
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpectancies/datasets/nationallifetablesunitedkingdomreferencetables


Multiple R-squared:  0.4855, Adjusted R-squared:  0.4803  

F-statistic: 93.44 on 1 and 99 DF,  p-value: 5.85e-16 

> plot(x,qx, main = "Regression of model for q_x") 

> abline(model1) 

 

We immediately see a number of problems with a simple linear regression model: 

• low R2 of 48.6% 

• a non-linear relationship in age 

• negative fitted values for a probability (qx) at young ages do not make sense 

• fitted values that systematically underestimate then overestimate then underestimate 

The obvious next step is to try a log transformation of the response variable 

> logqx = log(qx) 

> model2 <- lm(logqx ~ x) 

> summary(model2) 

 

Call: 

lm(formula = logqx ~ x) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-0.7932 -0.2013 -0.1122  0.1694  4.2178  

 



Coefficients: 

             Estimate Std. Error t value Pr(>|t|) 

(Intercept) -9.684780   0.101551  -95.37   <2e-16 

x            0.084657   0.001755   48.25   <2e-16 

                

(Intercept) *** 

x           *** 

--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.5141 on 99 degrees of freedom 

Multiple R-squared:  0.9592, Adjusted R-squared:  0.9588  

F-statistic:  2328 on 1 and 99 DF,  p-value: < 2.2e-16 

> plot(x,logqx, main = "Regression with log transformation") 

> abline(model2) 

 

With R2 now 96% this model looks more promising – so we will investigate its properties by 

calculating standardised residuals and examining their plots. 

> di = rstandard(model2) 

> plot(x,di) 



> plot(logqx,di) 

> qqnorm(di) 

> qqline(di) 

 

 

 

 



 

The residual plots cause us to doubt whether a regression model in log(qx) is suitable: 

• the pattern of standardised residuals is not random suggesting some elements of the 

relationship at least are not linear 

• the residuals at the lower ages remain very high 

• there is evidence that the distribution of residuals is not normal 

• there remains some systematic underestimation of mortality at higher ages 

These, combined with R2 of 96% which whilst high in many modelling contexts is not large enough in 

many of the capital management or medical statistics contexts of survival modelling, suggest that we 

need to look beyond linear regression for our survival and mortality modelling in this module. 

 


