List Solutions 1 3

Solution to Exercise 104: Sorted Order

##
Display the integers entered by the user in ascending order.
#

Start with an empty list
data = []

Read values, adding them to the list, until the user enters 0
num = int(input("Enter an integer (0 to quit): "))
while num != O:

data.append (num)

num = int(input("Enter an integer (0 to quit): "))

Sort the values
data.sort ()

Invoking the sort method on a list rearranges the elements in the list into sorted order. Using
the sort method is appropriate for this problem because there is no need to keep a copy of the
original list. The sorted function can be used to create a new copy of the list where the elements
are in sorted order. Calling the sorted function does not modify the original list. As a result, it
can be used in situations where the original list and the sorted list are needed simultaneously.

Display the values in ascending order
print("The values, sorted into ascending order, are:")
for num in data:

print (num)

© Springer International Publishing Switzerland 2014 127
B. Stephenson, The Python Workbook, DOI 10.1007/978-3-319-14240-1_13

This copy belongs to 'acha04'

128 13

List Solutions

Solution to Exercise 106: Remove Outliers

##
Remove the outliers from a data set.
#

Remove the outliers from a list of data
@param data the list of data values to process
@param num_outliers the number of smallest and largest values to remove
@return a new copy of data where the values are sorted into ascending
order and the smallest and largest values have been removed
def removeOutliers(data, num_outliers):
Create a new copy of the list that is in sorted order
retval = sorted(data)

Remove num_outliers largest values

for i in range(num.outliers): The smallest and largest outliers could be re-
retval.pop() moved using the same loop. Two loops are
used in this solution to make the steps more

Remove num_outliers smallest values clear.
for i in range(num_outliers):
retval.pop(0)

Return the result
return retval

Read data from the user, and remove the two largest and two smallest values
def main():
Read values from the user until a blank line is entered
values = []
s = input("Enter a value (blank line to quit): ")
while s != "":
num = float(s)
values.append (num)
s = input("Enter a value (blank line to quit): ")

Display the result or an appropriate error message

if len(values) < 4:
print("You didn’t enter enough values.")

else:
print("With the outliers removed: ", removeOutliers(values, 2))
print("The original data: ", values)

Call the main function
main()

This copy belongs to 'acha04'

Solution to Exercise 107: Avoiding Duplicates 129

Solution to Exercise 107: Avoiding Duplicates

##
Read a collection of words entered by the user. Display each word entered

by the user only once, in the same order that the words were entered.
i

Begin reading words into a list
words = []
word = input("Enter a word (blank line to quit): ")
while word != "":
Only add the word to the list if
it is not already present in it
if word not in words: The expression word not in words is
words . append (word) equivalentto not (word in words).

Read the next word from the user
word = input("Enter a word (blank line to quit): ")

Display the unique words
for word in words:
print (word)

Solution to Exercise 108: Negatives, Zeros and Positives

it
Read a collection of integers from the user. Display all of the negative numbers,
followed by all of the zeros, followed by all of the positive numbers.

#
Create three lists to store the negative, zero and This solution uses a list to
positive values keep track of the zeros that
negatives = [] are entered. However, be-
zeros = [] cause all of the zeros are the
positives = [] same, it isn’t actually neces-
sary to save them. Instead,
Read all of the integers from the user, storing each one could use an integer
integer in the correct list variable to count the num-
line = input("Enter an integer (blank to quit): ") ber of zeros and then display
while line != "": that many zeros later in the
num = int(line) program.
if num < O:

negatives.append (num)
elif num > O:

positives.append (num)
else:

zeros.append (num)

Read the next line of input from the user
line = input("Enter an integer (blank to quit): ")

This copy belongs to 'acha04'

130 13 List Solutions

Display all of the negative values, then all of the zeros, then all of the positive values
print ("The numbers were: ")

for n in negatives:
print(n)

for n in zeros:
print(n)

for n in positives:
print(n)

Solution to Exercise 110: Perfect Numbers

##

A number, n, is a perfect number if the sum of the proper divisors of n is equal
ton. This program displays all of the perfect numbers between 1 and LIMIT.
i

from proper.divisors import properDivisors

LIMIT = 10000

Determine whether or not a number is perfect. A number is perfect if the
sum of its proper divisors is equal to the number itself.
@param n the number to check for perfection
@return True if the number is perfect, False otherwise
def isPerfect(n):
Get a list of the proper divisors of n
divisors = properDivisors(n)

Compute the total of all of the divisors The total could also be com-
total = 0 puted using the sum func-
for d in divisors: tion. This would reduce the

total = total + d calculation of the total to a

single line.
Return the appropriate result
if total == n:
return True
return False

Display all of the perfect numbers between 1 and LIMIT
def main():
print("The perfect numbers between 1 and", LIMIT, "are:")
for i in range(1, LIMIT + 1):
if isPerfect(i):
print(" ", i)

Call the main function
main()

This copy belongs to 'acha04'

Solution to Exercise 113: Formatting a List

131

Solution to Exercise 113: Formatting a List

#H

Display a list of items so that they are separated by commas and the word
‘‘and’’ appears between the final two items.

#

Format a list of items so that they are separated by commas and ‘‘and’’
@param items the list of items to format
@return a string containing the items with the desired formatting
#
def formatList(items):
Handle lists of 0 and 1 items as special cases
if len(items) ==
return "<empty>"
if len(items) ==
return str(items[0])

Loop over all of the items in the list except the last two
result = ""
for i in range(0, len(items) - 2):

result = result + str(items[i]) + ", "

Each item is explicitly cast to a string by calling the st r function before it is added to the result.

This allows formatList to format lists that contain numbers in addition to strings.

Add the second last and last items to the result, separated by *‘and’’
result = result + str(items[len(items) - 2]) + " and "
result = result + str(items[len(items) - 1])

Return the result
return result

##
Read several items entered by the user and display them with nice formatting.
#
def main():
Read items from the user until a blank line is entered
items = []
line = input("Enter an item (blank to quit): ")
while line != "":
items.append(line)
line = input("Enter an item (blank to quit): ")

Format and display the items
print("The items are J%s." J formatList(items))

Call the main function
main()

This copy belongs to 'acha04'

132 13 List Solutions

Solution to Exercise 114: Random Lottery Numbers

##

Compute random but distinct numbers for a lottery ticket.
#

from random import randrange

MIN.NUM = 1 Using constants makes it easy to recongifure
MAX_NUM = 49 our program for other lotteries.
NUM_NUMS = 6

Keep a list of the numbers for the ticket
ticket nums = []

Generate NUM_NUMS random but distinct numbers
for i in range (NUM_NUMS) :
Generate a number that isn’t already on the ticket
rand = randrange(MIN_NUM, MAX_NUM + 1)
while rand in ticket_nums:
rand = randrange (MIN_NUM, MAX_NUM + 1)

Add the distinct number to the ticket
ticket_nums.append(rand)

Sort the numbers into ascending order and display them
ticket nums.sort()
print ("Your numbers are: ", end="")
for n in ticket_nums:
print(n, end=" ")
print ()

Solution to Exercise 118: Shuffling a Deck of Cards

##

Create a deck of cards and shuffle it.
#

from random import randrange

Construct a standard deck of cards with 4 suits and 13 values per suit
@return a list of cards, with each card represented by two characters
def createDeck():

Create a list to store the cards in

cards = []

For each suit and each value
forisult in: ["s™, "R, 4w, Mee]e
fori-palue;dn ['2%; NN, Waw, MENL. wgu gn nghy MoQw. A
Bpe, (W3R SQ, MRS, FaU).
Construct the card and add it to the list
cards.append(value + suit)

This copy belongs to 'acha04'

Solution to Exercise 118: Shuffling a Deck of Cards 133

Return the complete deck of cards
return cards

Shuffle a deck of cards, modifying the deck of cards passed as a parameter
@param cards the list of cards to shuffle
def shuffle(cards):
For each card
for i in range(0, len(cards)):
Pick a random index
other_pos = randrange(0, len(cards))

Swap the current card with the one at the random position
temp = cards[il]

cards[i] = cards([other_pos]

cards [other_pos] = temp

Display a deck of cards before and after it has been shuffled
def main():
cards = createDeck()
print("The original deck of cards is: ")
print (cards)
print()

shuffle(cards)
print("The shuffled deck of cards is: ")
print(cards)

Call the main program only if this file has not been imported
if _name__ == "_main__":
main()

Solution to Exercise 121: Count the Elements

##

Count the number of elements in a list that are greater than or equal
to some minimum value and less than some maximum value.

#

Determine how many elements in data are greater than or equal to mn and less than mx.
@param data the list to process
@param mn the minimum acceptable value
@param mx the exclusive upper bound on acceptability
@return the number of elements, e, such that mn <=e < mx
def countRange(data, mn, mx):
Count the number of elements within the acceptable range
count = 0
for e in data:
Check each element
if mn <= e and e < mx:
count = count + 1

Return the result
return count

This copy belongs to 'acha04'

134 13 List Solutions

Demonstrate the countRange function
def main():
data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Test a case where some elements are within the range
print("Counting the elements in [1..10] that are between 5 and 7...")
print("Result: %d Expected: 2" % countRange(data, 5, 7))

Test a case where all elements are within the range
print("Counting the elements in [1..10] that are between -5 and 77...")
print("Result: %d Expected: 10") countRange(data, -5, 77))

Test a case where no elements are within the range
print("Counting the elements in [1..10] that are between 12 and 17...")
print("Result: %d Expected: 0" % countRange(data, 12, 17))

Test a case where the list is empty
print("Counting the elements in [] that are between O and 100...")
print("Result: %d Expected: 0" % countRange([], 0, 100))

Test a case with duplicate values

data = [1, 2, 3, 4, 1, 2, 3, 4]

print("Counting the elements in [1, 2, 3, 4, 1, 2, 3, 4] that are", \
"between 2 and 4...")

print("Result: %d Expected: 4" % countRange(data, 2, 4))

Call the main program
main()

Solution to Exercise 122: Tokenizing a String

##
Tokenize a string containing a mathematical expression.
#

Convert a mathematical expression into a list of tokens
@param s the string to tokenize
@return a list of the tokens in s, or an empty list if an error occurs
def tokenList(s)
Remove all of the spaces from s
s = s.replace(" ", "")

This copy belongs to 'acha04'

Solution to Exercise 122:Tokenizing a String 135

Loop through all of the characters in the string,

identifying the tokens and adding them to the list.

tokens = []

i=0

while i < len(s):
Handle the tokens that are always a single character: =, /, ", (and)
if s[i] == "s" or s[i] == "/" or s[i] == """ or \

s[i] == "(" or s[i] == ")":
tokens.append(s[i])
imfod

Handle + and -

elif s[i] == "+" or s[i] == "-":

If there is a previous character and it is a number or close bracket
then the + or - is a token on its own
if i > 0 and (s[i-1] >= "0" and s[i-1] <= "9" or s[i-1] == ")"):
tokens.append(s[i])
i=i+1
else:
The + or - is part of a number
num = s[i]
i=3i+1

Keep on adding characters to the token as long as they are digits
while i < len(s) and s[i] >= "0" and s[i] <= "9":
num = num + s[i]
i=1i+1
tokens.append (num)

Handle a number without a leading + or -
elif s[i] >= "0" and s[i] <= "9":
num = ""
Keep on adding characters to the token as long as they are digits
while i < len(s) and s[i] >= "0" and s[i] <= "9":
num = num + s[i]
i=i+1
tokens.append (num)

Any other character means the expression is not valid.
Return an empty list to indicate that an error ocurred.
else:
return []
return tokens

Read an expression from the user and tokenize it, displaying the result
def main():
exp = input("Enter a mathematical expression: ")
tokens = tokenList (exp)
print("The tokens are:", tokens)

Call the main function only if the file hasn’t been imported

if __npame.. == "__main..":
main()

This copy belongs to 'acha04'

136

13 List Solutions

Solution to Exercise 126: Generate All Sublists of a List

#H

#
#

Compute all sublists of a list

Generate a list of of all of the sublists of a list

#
#

@param data the list for which the sublists are generated
@return a list containing all of the sublists of data

def allSublists(data):

Start out with the empty list as the only sublist of data
sublists = [[]]

Generate all of the sublists of data from length 1 to len(data)
for length in range(1, len(data) + 1):
Generate the sublists starting at each index
for i in range(0, len(data) - length + 1):
Add the current sublist to the list of sublists
sublists.append(datali : i + length])

Return the result
return sublists

Demonstrate the allSublists function
def main():

print ("The sublists of [] are: ")
print(allSublists([1))

print("The sublists of [1] are: ")
print(allSublists([1]))

print("The sublists of [1, 2] are: ")
print(allSublists([1, 2]))

print("The sublists of [1, 2, 3] are: ")
print(allSublists([1, 2, 3]))

print("The sublists of [1, 2, 3, 4] are: ")
print(allSublists([1, 2, 3, 4]))

Call the main function
main()

A list containing an empty
list is denoted by [[]].

Solution to Exercise 127: The Sieve of Eratosthenes

##

Determine all of the prime numbers from 2 to some limit entered

by the user using the Sieve of Eratosthenes.

#

Read the limit from the user
limit = int(input("Generate all primes up to what limit? "))

This copy belongs to 'acha04'

Solution to Exercise 127:The Sieve of Eratosthenes 137

Generate all of the numbers from 0 to limit

nums = []

for i in range(0, limit + 1):
nums . append (i)

**Cross out’’ 1 by replacing it with a 0
nums [1] = 0

Cross out all of the multiples of each prime number that we discover
p=2
while p < limit:
Cross out all multiples of p (but not p itself)
for i in range(p*2, limit + 1, p):
nums[i] = 0

Find the next number that is not crossed out

p=p+1

while p < limit and nums[p] == 0:
p=p+1

Display the result
print("The primes up to", limit, "are:")
for i in nums:
if nums[i] != O:
print (i)

This copy belongs to 'acha04'

	Preface
	Contents
	Part IExercises
	1 Introduction to Programming Exercises
	Exercise 1: Mailing Address
	Exercise 2: Hello
	Exercise 3: Area of a Room
	Exercise 4: Area of a Field
	Exercise 5: Bottle Deposits
	Exercise 6: Tax and Tip
	Exercise 7: Sum of the First n Positive Integers
	Exercise 8: Widgets and Gizmos
	Exercise 9: Compound Interest
	Exercise 10: Arithmetic
	Exercise 11: Fuel Efficiency
	Exercise 12: Distance Between Two Points on Earth
	Exercise 13: Making Change
	Exercise 14: Height Units
	Exercise 15: Distance Units
	Exercise 16: Area and Volume
	Exercise 17: Heat Capacity
	Exercise 18: Volume of a Cylinder
	Exercise 19: Free Fall
	Exercise 20: Ideal Gas Law
	Exercise 21: Area of a Triangle
	Exercise 22: Area of a Triangle (Again)
	Exercise 23: Area of a Regular Polygon
	Exercise 24: Units of Time
	Exercise 25: Units of Time (Again)
	Exercise 26: Current Time
	Exercise 27: Body Mass Index
	Exercise 28: Wind Chill
	Exercise 29: Celsius to Fahrenheit and Kelvin
	Exercise 30: Units of Pressure
	Exercise 31: Sum of the Digits in an Integer
	Exercise 32: Sort 3 Integers
	Exercise 33: Day Old Bread

	2 If Statement Exercises
	Exercise 34: Even or Odd?
	Exercise 35: Dog Years
	Exercise 36: Vowel or Consonant
	Exercise 37: Name that Shape
	Exercise 38: Month Name to Number of Days
	Exercise 39: Sound Levels
	Exercise 40: Name that Triangle
	Exercise 41: Note To Frequency
	Exercise 42: Frequency To Note
	Exercise 43: Faces on Money
	Exercise 44: Date to Holiday Name
	Exercise 45: What Color is that Square?
	Exercise 46: Season from Month and Day
	Exercise 47: Birth Date to Astrological Sign
	Exercise 48: Chinese Zodiac
	Exercise 49: Richter Scale
	Exercise 50: Roots of a Quadratic Function
	Exercise 51: Letter Grade to Grade Points
	Exercise 52: Grade Points to Letter Grade
	Exercise 53: Assessing Employees
	Exercise 54: Wavelengths of Visible Light
	Exercise 55: Frequency to Name
	Exercise 56: Cell Phone Bill
	Exercise 57: Is it a Leap Year?
	Exercise 58: Next Day
	Exercise 59: Is a License Plate Valid?
	Exercise 60: Roulette Payouts

	3 Loop Exercises
	Exercise 61: Average
	Exercise 62: Discount Table
	Exercise 63: Temperature Conversion Table
	Exercise 64: No More Pennies
	Exercise 65: Compute the Perimeter of a Polygon
	Exercise 66: Compute a Grade Point Average
	Exercise 67: Admission Price
	Exercise 68: Parity Bits
	Exercise 69: Approximate π
	Exercise 70: Caesar Cipher
	Exercise 71: Square Root
	Exercise 72: Is a String a Palindrome?
	Exercise 73: Multiple Word Palindromes
	Exercise 74: Multiplication Table
	Exercise 75: Greatest Common Divisor
	Exercise 76: Prime Factors
	Exercise 77: Binary to Decimal
	Exercise 78: Decimal to Binary
	Exercise 79: Maximum Integer
	Exercise 80: Coin Flip Simulation

	4 Function Exercises
	Exercise 81: Compute the Hypotenuse
	Exercise 82: Taxi Fare
	Exercise 83: Shipping Calculator
	Exercise 84: Median of Three Values
	Exercise 85: Convert an Integer to its Ordinal Number
	Exercise 86: The Twelve Days of Christmas
	Exercise 87: Center a String in the Terminal
	Exercise 88: Is it a Valid Triangle?
	Exercise 89: Capitalize It
	Exercise 90: Does a String Represent an Integer?
	Exercise 91: Operator Precedence
	Exercise 92: Is a Number Prime?
	Exercise 93: Next Prime
	Exercise 94: Random Password
	Exercise 95: Random License Plate
	Exercise 96: Check a Password
	Exercise 97: Random Good Password
	Exercise 98: Hexadecimal and Decimal Digits
	Exercise 99: Arbitrary Base Conversions
	Exercise 100: Days in a Month
	Exercise 101: Reduce a Fraction to Lowest Terms
	Exercise 102: Reduce Measures
	Exercise 103: Magic Dates

	5 List Exercises
	Exercise 104: Sorted Order
	Exercise 105: Reverse Order
	Exercise 106: Remove Outliers
	Exercise 107: Avoiding Duplicates
	Exercise 108: Negatives, Zeros and Positives
	Exercise 109: List of Proper Divisors
	Exercise 110: Perfect Numbers
	Exercise 111: Only the Words
	Exercise 112: Below and Above Average
	Exercise 113: Formatting a List
	Exercise 114: Random Lottery Numbers
	Exercise 115: Pig Latin
	Exercise 116: Pig Latin Improved
	Exercise 117: Line of Best Fit
	Exercise 118: Shuffling a Deck of Cards
	Exercise 119: Dealing Hands of Cards
	Exercise 120: Is a List already in Sorted Order?
	Exercise 121: Count the Elements
	Exercise 122: Tokenizing a String
	Exercise 123: Infix to Postfix
	Exercise 124: Evaluate Postfix
	Exercise 125: Does a List contain a Sublist?
	Exercise 126: Generate All Sublists of a List
	Exercise 127: The Sieve of Eratosthenes

	6 Dictionary Exercises
	6.1 Exercise 128: Reverse Lookup
	6.2 Exercise 129: Two Dice Simulation
	6.3 Exercise 130: Text Messaging
	6.4 Exercise 131: Morse Code
	6.5 Exercise 132: Postal Codes
	6.6 Exercise 133: Write Out Numbers in English
	6.7 Exercise 134: Unique Characters
	6.8 Exercise 135: Anagrams
	6.9 Exercise 136: Anagrams Again
	6.10 Exercise 137: Scrabble� Score
	6.11 Exercise 138: Create a Bingo Card
	6.12 Exercise 139: Checking for a Winning Card
	6.13 Exercise 140: Play Bingo

	7 File and Exception Exercises
	Exercise 141: Display the Head of a File
	Exercise 142: Display the Tail of a File
	Exercise 143: Concatenate Multiple Files
	Exercise 144: Number the Lines in a File
	Exercise 145: Find the Longest Word in a File
	Exercise 146: Letter Frequencies
	Exercise 147: Words that Occur Most
	Exercise 148: Sum a List of Numbers
	Exercise 149: Both Letter Grades and Grade Points
	Exercise 150: Remove Comments
	Exercise 151: Two Word Random Password
	Exercise 152: What's that Element Again?
	Exercise 153: A Book with No ``e'' �
	Exercise 154: Names that Reached Number One
	Exercise 155: Gender Neutral Names
	Exercise 156: Most Births in a given Time Period
	Exercise 157: Distinct Names
	Exercise 158: Spell Checker
	Exercise 159: Repeated Words
	Exercise 160: Redacting Text in a File
	Exercise 161: Missing Comments
	Exercise 162: Consistent Line Lengths
	Exercise 163: Words with Six Vowels in Order

	8 Recursion Exercises
	Exercise 164: Total the Values
	Exercise 165: Greatest Common Divisor
	Exercise 166: Recursive Decimal to Binary
	Exercise 167: Recursive Palindrome
	Exercise 168: Recursive Square Root
	Exercise 169: String Edit Distance
	Exercise 170: Possible Change
	Exercise 171: Spelling with Element Symbols
	Exercise 172: Element Sequences
	Exercise 173: Run-Length Decoding
	Exercise 174: Run-Length Encoding

	Part IISolutions
	9 Introduction to Programming Solutions
	Solution to Exercise 1: Mailing Address
	Solution to Exercise 3: Area of a Room
	Solution to Exercise 4: Area of a Field
	Solution to Exercise 5: Bottle Deposits
	Solution to Exercise 6: Tax and Tip
	Solution to Exercise 7: Sum of the First n Positive Integers
	Solution to Exercise 10: Arithmetic
	Solution to Exercise 13: Making Change
	Solution to Exercise 14: Height Units
	Solution to Exercise 17: Heat Capacity
	Solution to Exercise 19: Free Fall
	Solution to Exercise 23: Area of a Regular Polygon
	Solution to Exercise 25: Units of Time (Again)
	Solution to Exercise 28: Wind Chill
	Solution to Exercise 32: Sort 3 Integers
	Solution to Exercise 33: Day Old Bread

	10 If Statement Solutions
	Solution to Exercise 34: Even or Odd?
	Solution to Exercise 36: Vowel or Consonant
	Solution to Exercise 37: Name that Shape
	Solution to Exercise 38: Month Name to Number of Days
	Solution to Exercise 40: Name that Triangle
	Solution to Exercise 41: Note to Frequency
	Solution to Exercise 42: Frequency to Note
	Solution to Exercise 46: Season from Month and Day
	Solution to Exercise 48: Chinese Zodiac
	Solution to Exercise 51: Letter Grade to Grade Points
	Solution to Exercise 53: Assessing Employees
	Solution to Exercise 57: Is it a Leap Year?
	Solution to Exercise 59: Is a License Plate Valid?
	Solution to Exercise 60: Roulette Payouts

	11 Loop Solutions
	Solution to Exercise 64: No more Pennies
	Solution to Exercise 65: Computer the Perimeter of a Polygon
	Solution to Exercise 67: Admission Price
	Solution to Exercise 68: Parity Bits
	Solution to Exercise 70: Caesar Cipher
	Solution to Exercise 72: Is a String a Palindrome?
	Solution to Exercise 74: Multiplication Table
	Solution to Exercise 75: Greatest Common Divisor
	Solution to Exercise 78: Decimal to Binary
	Solution to Exercise 79: Maximum Integer

	12 Function Solutions
	Solution to Exercise 84: Median of Three Values
	Solution to Exercise 86: The Twelve days of Christmas
	Solution to Exercise 87: Center a String in the Terminal
	Solution to Exercise 89: Capitalize it
	Solution to Exercise 90: Does a String Represent an Integer?
	Solution to Exercise 92: Is a Number Prime?
	Solution to Exercise 94: Random Password
	Solution to Exercise 96: Check a Password
	Solution to Exercise 99: Arbitrary Base Conversions
	Solution to Exercise 101: Reduce a Fraction to Lowest Terms
	Solution to Exercise 102: Reduce Measures
	Solution to Exercise 103: Magic Dates

	13 List Solutions
	Solution to Exercise 104: Sorted Order
	Solution to Exercise 106: Remove Outliers
	Solution to Exercise 107: Avoiding Duplicates
	Solution to Exercise 108: Negatives, Zeros and Positives
	Solution to Exercise 110: Perfect Numbers
	Solution to Exercise 113: Formatting a List
	Solution to Exercise 114: Random Lottery Numbers
	Solution to Exercise 118: Shuffling a Deck of Cards
	Solution to Exercise 121: Count the Elements
	Solution to Exercise 122: Tokenizing a String
	Solution to Exercise 126: Generate All Sublists of a List
	Solution to Exercise 127: The Sieve of Eratosthenes

	14 Dictionary Solutions
	Solution to Exercise 128: Reverse Lookup
	Solution to Exercise 129: Two Dice Simulation
	Solution to Exercise 134: Unique Characters
	Solution to Exercise 135: Anagrams
	Solution to Exercise 137: ScrabbleTM Score
	Solution to Exercise 138: Create a Bingo Card

	15 File and Exception Solutions
	Solution to Exercise 141: Display the Head of a File
	Solution to Exercise 142: Display the Tail of a File
	Solution to Exercise 143: Concatenate Multiple Files
	Solution to Exercise 148: Sum a List of Numbers
	Solution to Exercise 150: Remove Comments
	Solution to Exercise 151: Two Word Random Password
	Solution to Exercise 153: A Book with No ``e'' �
	Solution to Exercise 154: Names that Reached Number One
	Solution to Exercise 158: Spell Checker
	Solution to Exercise 160: Redacting Text in a File
	Solution to Exercise 161: Missing Comments

	16 Recursion Solutions
	Solution to Exercise 164: Total the Values
	Solution to Exercise 167: Recursive Palindrome
	Solution to Exercise 169: String Edit Distance
	Solution to Exercise 172: Element Sequences
	Solution to Exercise 174: Run-Length Encoding

	Index

