
5List Exercises

Lists help programmers manage larger amounts of data by allowing several (or even
many) values to be stored in one variable. This makes it practical to solve larger
problems that involve many data values. To solve the exercises in this chapter you
should expect to:

• Create a variable that holds a list of values
• Modify a list by appending, inserting, updating and deleting elements
• Search a list for a value
• Display some or all of the values in a list
• Write a function that takes a list as a parameter
• Write a function that returns a list as its result

Exercise 104: Sorted Order

(Solved—21 Lines)
Write a program that reads integers from the user and stores them in a list. Your
program should continue reading values until the user enters 0. Then it should display
all of the values entered by the user (except for the 0) in order from smallest to largest,
with one value appearing on each line. Use either the sortmethod or the sorted
function to sort the list.

Exercise 105: Reverse Order

(20 Lines)
Write a program that reads integers from the user and stores them in a list. Use 0 as
a sentinel value to mark the end of the input. Once all of the values have been read
your program should display them (except for the 0) in reverse order, with one value
appearing on each line.

© Springer International Publishing Switzerland 2014
B. Stephenson, The Python Workbook, DOI 10.1007/978-3-319-14240-1_5

49

This copy belongs to 'acha04'

50 5 List Exercises

Exercise 106: Remove Outliers

(Solved—43 Lines)
When analysing data collected as part of a science experiment it may be desirable
to remove the most extreme values before performing other calculations. Write a
function that takes a list of values and an non-negative integer, n, as its parameters.
The function should create a new copy of the list with the n largest elements and the
n smallest elements removed. Then it should return the new copy of the list as the
function’s only result. The order of the elements in the returned list does not have to
match the order of the elements in the original list.

Write a main program that demonstrates your function. Your function should read
a list of numbers from the user and remove the two largest and two smallest values
from it. Display the list with the outliers removed, followed by the original list. Your
program should generate an appropriate error message if the user enters less than 4
values.

Exercise 107: Avoiding Duplicates

(Solved—21 Lines)
In this exercise, you will create a program that reads words from the user until the
user enters a blank line. After the user enters a blank line your program should dis-
play each word entered by the user exactly once. The words should be displayed in
the same order that they were entered. For example, if the user enters:

first
second
first
third
second

then your program should display:

first
second
third

Exercise 108:Negatives, Zeros and Positives

(Solved—38 Lines)
Create a program that reads integers from the user until a blank line is entered. Once
all of the integers have been read your program should display all of the negative
numbers, followed by all of the zeros, followed by all of the positive numbers.Within
each group the numbers should be displayed in the same order that they were entered

This copy belongs to 'acha04'

Exercise 108:Negatives, Zeros and Positives 51

by the user. For example, if the user enters the values 3, -4, 1, 0, -1, 0, and -2 then
your program should output the values -4, -1, -2, 0, 0, 3, and 1. Your program
should display each value on its own line.

Exercise 109: List of Proper Divisors

(36 Lines)
A proper divisor of a positive integer, n, is a positive integer less than n which divides
evenly into n. Write a function that computes all of the proper divisors of a positive
integer. The integer will be passed to the function as its only parameter. The function
will return a list containing all of the proper divisors as its only result. Complete
this exercise by writing a main program that demonstrates the function by reading
a value from the user and displaying the list of its proper divisors. Ensure that your
main program only runs when your solution has not been imported into another file.

Exercise 110: Perfect Numbers

(Solved—35 Lines)
An integer, n, is said to be perfect when the sum of all of the proper divisors of n is
equal to n. For example, 28 is a perfect number because its proper divisors are 1, 2,
4, 7 and 14, and 1 + 2 + 4 + 7 + 14 = 28.

Write a function that determines whether or not a positive integer is perfect. Your
functionwill take one parameter. If that parameter is a perfect number then your func-
tion will return true. Otherwise it will return false. In addition, write a main program
that uses your function to identify and display all of the perfect numbers between 1
and 10,000. Import your solution to Exercise 109 when completing this task.

Exercise 111:Only theWords

(38 Lines)
In this exercise you will create a program that identifies all of the words in a string
entered by the user. Begin by writing a function that takes a string of text as its only
parameter.Your function should return a list of thewords in the stringwith the punctu-
ation marks at the edges of the words removed. The punctuation marks that you must
remove include commas, periods, question marks, hyphens, apostrophes, exclama-
tion points, colons, and semicolons. Do not remove punctuation marks that appear in
the middle of a words, such as the apostrophes used to form a contraction. For exam-
ple, if your function is providedwith the string"Examples of contractions
include: don’t, isn’t, and wouldn’t." then your function should
return the list ["Examples", "of", "contractions", "include",
"don’t", "isn’t", "and", "wouldn’t"].

This copy belongs to 'acha04'

52 5 List Exercises

Write a main program that demonstrates your function. It should read a string
from the user and display all of the words in the string with the punctuation marks
removed. You will need to import your solution to this exercise when completing
Exercise 158. As a result, you should ensure that your main program only runs when
your file has not been imported into another program.

Exercise 112: Below and Above Average

(44 Lines)
Write a program that reads numbers from the user until a blank line is entered. Your
program should display the average of all of the values entered by the user. Then
the program should display all of the below average values, followed by all of the
average values (if any), followed by all of the above average values. An appropriate
label should be displayed before each list of values.

Exercise 113: Formatting a List

(Solved—43 Lines)
When writing out a list of items in English, one normally separates the items with
commas. In addition, the word “and” is normally included before the last item, unless
the list only contains one item. Consider the following four lists:

apples
apples and oranges
apples, oranges and bananas
apples, oranges, bananas and lemons

Write a function that takes a list of strings as its only parameter. Your function
should return a string that contains all of the items in the list formatted in the manner
described previously as its only result. While the examples shown previously only
include lists containing four elements or less, your function should behave correctly
for lists of any length. Include a main program that reads several items from the user,
formats them by calling your function, and then displays the result returned by the
function.

Exercise 114: Random Lottery Numbers

(Solved—28 Lines)
In order to win the top prize in a particular lottery, one must match all 6 numbers
on his or her ticket to the 6 numbers between 1 and 49 that are drawn by the lottery
organizer. Write a program that generates a random selection of 6 numbers for a

This copy belongs to 'acha04'

Exercise 114: Random Lottery Numbers 53

lottery ticket. Ensure that the 6 numbers selected do not contain any duplicates.
Display the numbers in ascending order.

Exercise 115: Pig Latin

(32 Lines)
Pig Latin is a language constructed by transforming English words. While the ori-
gins of the language are unknown, it is mentioned in at least two documents from
the nineteenth century, suggesting that it has existed for more than 100 years. The
following rules are used to translate English into Pig Latin:

• If theword beginswith a consonant (includingy), then all letters at the beginning of
theword, up to the first vowel (excludingy), are removed and then added to the end
of the word, followed by ay. For example, computer becomes omputercay
and think becomes inkthay.

• If the word begins with a vowel (not including y), then way is added to the end
of the word. For example, algorithm becomes algorithmway and office
becomes officeway.

Write a program that reads a line of text from the user. Then your program should
translate the line into Pig Latin and display the result. Youmay assume that the string
entered by the user only contains lowercase letters and spaces.

Exercise 116: Pig Latin Improved

(51 Lines)
Extend your solution to Exercise 115 so that it correctly handles uppercase letters and
punctuationmarks such as commas, periods, questionmarks and exclamationmarks.
If an English word begins with an uppercase letter then its Pig Latin representation
should also beginwith an uppercase letter and the uppercase lettermoved to the end of
the word should be changed to lowercase. For example, Computer should become
Omputercay. If a word ends in a punctuation mark then the punctuation mark
should remain at the end of the word after the transformation has been performed.
For example, Science! should become Iencescay!.

Exercise 117: Line of Best Fit

(41 Lines)
A line of best fit is a straight line that best approximates a collection of n data points.
In this exercise, we will assume that each point in the collection has an x coordinate
and a y coordinate. The symbols x̄ and ȳ are used to represent the average x value in

This copy belongs to 'acha04'

54 5 List Exercises

the collection and the average y value in the collection respectively. The line of best
fit is represented by the equation y = mx + b where m and b are calculated using
the following formulas:

m =
∑

xy − (
∑

x)(
∑

y)
n

∑
x2 − (

∑
x)2

n
b = ȳ − mx̄

Write a program that reads a collection of points from the user. The user will enter
the x part of the first coordinate on its own line, followed by the y part of the first
coordinate on its own line. Allow the user to continue entering coordinates, with the
x and y parts each entered on their own line, until your program reads a blank line for
the x coordinate. Display the formula for the line of best fit in the form y = mx + b
by replacing m and b with the values you calculated using the preceding formulas.
For example, if the user inputs the coordinates (1, 1), (2, 2.1) and (3, 2.9) then your
program should display y = 0.95x + 0.1.

Exercise 118: Shuffling a Deck of Cards

(Solved—48 Lines)
A standard deck of playing cards contains 52 cards. Each card has one of four suits
along with a value. The suits are normally spades, hearts, diamonds and clubs while
the values are 2 through 10, Jack, Queen, King and Ace.

Each playing card can be represented using two characters. The first character is
the value of the card, with the values 2 through 9 being represented directly. The
characters “T”, “J”, “Q”, “K” and “A” are used to represent the values 10, Jack,
Queen, King and Ace respectively. The second character is used to represent the suit
of the card. It is normally a lowercase letter: “s” for spades, “h” for hearts, “d” for
diamonds and “c” for clubs. The following table provides several examples of cards
and their two-character representations.

Card Abbreviation
Jack of spades Js
Two of clubs 2c
Ten of diamonds Td
Ace of hearts Ah
Nine of spades 9s

Begin by writing a function named createDeck. It will use loops to create a
complete deck of cards by storing the two-character abbreviations for all 52 cards
into a list. Return the list of cards as the function’s only result. Your function will
not take any parameters.

This copy belongs to 'acha04'

Exercise 118: Shuffling a Deck of Cards 55

Write a second function named shuffle that randomizes the order of the cards
in a list. One technique that can be used to shuffle the cards is to visit each element
in the list and swap it with another random element in the list. You must write your
own loop for shuffling the cards. You cannot make use of Python’s built-in shuffle
function.

Use both of the functions described in the previous paragraphs to create a main
program that displays a deck of cards before and after it has been shuffled. Ensure
that your main program only runs when your functions have not been imported into
another file.

Exercise 119:Dealing Hands of Cards

(44 Lines)
In many card games each player is dealt a specific number of cards after the deck
has been shuffled. Write a function, deal, which takes the number of hands, the
number of cards per hand, and a deck of cards as its three parameters. Your function
should return a list containing all of the hands that were dealt. Each hand will be
represented as a list of cards.

When dealing the hands, your function should modify the deck of cards passed
to it as a parameter, removing each card from the deck as it is added to a player’s
hand. When cards are dealt, it is customary to give each player a card before any
player receives an additional card. Your function should follow this custom when
constructing the hands for the players.

Use your solution to Exercise 118 to help you construct a main program that
creates and shuffles a deck of cards, and then deals out four hands of five cards each.
Display all of the hands of cards, along with the cards remaining in the deck after
the hands have been dealt.

Exercise 120: Is a List already in Sorted Order?

(41 Lines)
Write a function that determines whether or not a list of values is in sorted order
(either ascending or descending). The function should return True if the list is
already sorted. Otherwise it should return False. Write a main program that reads
a list of numbers from the user and then uses your function to report whether or not
the list is sorted.

Make sure you consider these questions when completing this exercise: Is a
list that is empty in sorted order? What about a list containing one element?

This copy belongs to 'acha04'

56 5 List Exercises

Exercise 121: Count the Elements

(Solved—49 Lines)
Python’s standard library includes a method named count that determines how
many times a specific value occurs in a list. In this exercise, you will create a new
function namedcountRangewhich determines and returns the number of elements
within a list that are greater than or equal to someminimum value and less than some
maximum value. Your function will take three parameters: the list, the minimum
value and the maximum value. It will return an integer result greater than or equal to
0. Include a main program that demonstrates your function for several different lists,
minimum values and maximum values. Ensure that your program works correctly
for both lists of integers and lists of floating point numbers.

Exercise 122:Tokenizing a String

(Solved—64 Lines)
Tokenizing is the process of converting a string into a list of substrings, known as
tokens. In many circumstances, a list of tokens is far easier to work with than the
original string because the original string may have irregular spacing. In some cases
substantial work is also required to determine where one token ends and the next one
begins.

In a mathematical expression, tokens are items such as operators, numbers and
parentheses. Some tokens, such as *, /, ˆ, (and) are easy to identify because the
token is a single character, and the character is never part of another token. The + and
- symbols are a little bit more challenging to handle because they might represent
the addition or subtraction operator, or they might be part of a number token.

Hint: A + or - is an operator if the non-whitespace character immediately
before it is part of a number, or if the non-whitespace character immediately
before it is a close parenthesis. Otherwise it is part of a number.

Write a function that takes a string containing a mathematical expression as its
only parameter and breaks it into a list of tokens. Each token should be a parenthesis,
an operator, or a number with an optional leading + or - (for simplicity we will
only work with integers in this problem). Return the list of tokens as the function’s
result.

You may assume that the string passed to your function always contains a valid
mathematical expression consisting of parentheses, operators and integers. How-
ever, your function must handle variable amounts of whitespace between these
elements. Include a main program that demonstrates your tokenizing function by
reading an expression from the user and printing the list of tokens. Ensure that the

This copy belongs to 'acha04'

Exercise 122:Tokenizing a String 57

main program will not run when the file containing your solution is imported into
another program.

Exercise 123: Infix to Postfix

(62 Lines)
Mathematical expressions are often written in infix form, where operators appear
between the operands on which they act. While this is a common form, it is also
possible to express mathematical expressions in postfix form, where the operator
appears after both operands. For example, the infix expression 3 + 4 is written as
3 4 + in postfix form. One can convert an infix expression to postfix form using
the following algorithm:

Create a new empty list, operators
Create a new empty list, postfix

For each token in the infix expression
If the token is an integer then

Add the token to the end of postfix
If the token is an operator then

While operators is not empty and
the last item in operators is not an open parenthesis and
precedence(token) < precedence(last item in operators) do

Remove the last item from operators and add it to postfix
Add token to the end of operators

If the token is an open parenthesis then
Add token to the end of operators

If the token is a close parenthesis then
While the last item in operators is not an open parenthesis do

Remove the last item from operators and add it to postfix
Remove the open parenthesis from operators

While operators is not the empty list do
Remove the last item from operators and add it to postfix

Return postfix as the result of the algorithm

Use your solution to Exercise 122 to tokenize a mathematical expression. Then
use the algorithm above to transform the expression from infix form to postfix form.
Your code that implements the preceding algorithm should reside in a function that
takes a list of tokens representing an infix expression as its only parameter. It should
return a list of tokens representing the equivalent postfix expression as its only result.
Include a main program that demonstrates your infix to postfix function by reading
an expression from the user in infix form and displaying it in postfix form.

This copy belongs to 'acha04'

58 5 List Exercises

The purpose of converting from infix form to postfix form will become apparent
when you read Exercise 124. You may find your solutions to Exercises 90 and 91
helpful when completing this problem.

The algorithms provided in Exercises 123 and 124 do not perform any error
checking. As a result, you may crash your program or receive incorrect results
if you provide them with invalid input. These algorithms can be extended to
detect invalid input and respond to it in a reasonable manner. Doing so is left
as an independent study exercise for the interested student.

Exercise 124: Evaluate Postfix

(58 Lines)
Evaluating a postfix expression is easier than evaluating an infix expression because it
does not contain any brackets and there are no operator precedence rules to consider.
A postfix expression can be evaluated using the following algorithm:

Create a new empty list, values

For each token in the postfix expression
If the token is a number then

Convert it to an integer and add it to the end of values
Else

Remove an item from the end of values and call it right
Remove an item from the end of values and call it left
Apply the operator to left and right
Append the result to the end of values

Return the first item in values as the value of the expression

Write a program that reads a mathematical expression in infix form from the user,
evaluates it, and displays its value. Uses your solutions to Exercises 122 and 123
along with the algorithm shown above to solve this problem.

Exercise 125:Does a List contain a Sublist?

(44 Lines)
A sublist is a list that makes up part of a larger list. A sublist may be a list containing
a single element, multiple elements, or even no elements at all. For example, [1],
[2], [3] and [4] are all sublists of [1, 2, 3, 4]. The list [2, 3] is also a

This copy belongs to 'acha04'

Exercise 125:Does a List contain a Sublist? 59

sublist of [1, 2, 3, 4], but [2, 4] is not a sublist [1, 2, 3, 4] because
the elements 2 and 4 are not adjacent in the longer list. The empty list is a sublist of
any list. As a result, [] is a sublist of [1, 2, 3, 4]. A list is a sublist of itself,
meaning that [1, 2, 3, 4] is also a sublist of [1, 2, 3, 4].

In this exercise you will create a function, isSublist, that determines whether
or not one list is a sublist of another. Your function should take two lists, larger
andsmaller, as its only parameters. It should returnTrue if and only ifsmaller
is a sublist of larger. Write a main program that demonstrates your function.

Exercise 126:Generate All Sublists of a List

(Solved—40 Lines)
Using the definition of a sublist from Exercise 125, write a function that returns a list
containing every possible sublist of a list. For example, the sublists of [1, 2, 3]
are [], [1], [2], [3], [1, 2], [2, 3] and [1, 2, 3]. Note that your func-
tion will always return a list containing at least the empty list because the empty list
is a sublist of every list. Include a main program that demonstrate your function by
displaying all of the sublists of several different lists.

Exercise 127:The Sieve of Eratosthenes

(Solved—33 Lines)
The Sieve of Eratosthenes is a technique that was developed more than 2,000 years
ago to easily find all of the prime numbers between 2 and some limit, say 100. A
description of the algorithm follows:

Write down all of the numbers from 0 to the limit
Cross out 0 and 1 because they are not prime

Set p equal to 2
While p is less than the limit do

Cross out all multiples of p (but not p itself)
Set p equal to the next number in the list that is not crossed out

Report all of the numbers that have not been crossed out as prime

The key to this algorithm is that it is relatively easy to cross out every nth number
on a piece of paper. This is also an easy task for a computer—a for loop can simulate
this behavior when a third parameter is provided to the range function. When a
number is crossed out, we know that it is no longer prime, but it still occupies space on
the piece of paper, andmust still be consideredwhen computing later prime numbers.

This copy belongs to 'acha04'

60 5 List Exercises

As a result, you should not simulate crossing out a number by removing it from the
list. Instead, you should simulate crossing out a number by replacing it with 0. Then,
once the algorithm completes, all of the non-zero values in the list are prime.

Create a Python program that uses this algorithm to display all of the prime
numbers between 2 and a limit entered by the user. If you implement the algorithm
correctly you should be able to display all of the prime numbers less than 1,000,000
in a few seconds.

This algorithm for finding prime numbers is not Eratosthenes’ only claim to
fame. His other noteworthy accomplishments include calculating the circum-
ference of the Earth and the tilt of the Earth’s axis. He also served as the Chief
Librarian at the Library of Alexandria.

This copy belongs to 'acha04'

	Preface
	Contents
	Part IExercises
	1 Introduction to Programming Exercises
	Exercise 1: Mailing Address
	Exercise 2: Hello
	Exercise 3: Area of a Room
	Exercise 4: Area of a Field
	Exercise 5: Bottle Deposits
	Exercise 6: Tax and Tip
	Exercise 7: Sum of the First n Positive Integers
	Exercise 8: Widgets and Gizmos
	Exercise 9: Compound Interest
	Exercise 10: Arithmetic
	Exercise 11: Fuel Efficiency
	Exercise 12: Distance Between Two Points on Earth
	Exercise 13: Making Change
	Exercise 14: Height Units
	Exercise 15: Distance Units
	Exercise 16: Area and Volume
	Exercise 17: Heat Capacity
	Exercise 18: Volume of a Cylinder
	Exercise 19: Free Fall
	Exercise 20: Ideal Gas Law
	Exercise 21: Area of a Triangle
	Exercise 22: Area of a Triangle (Again)
	Exercise 23: Area of a Regular Polygon
	Exercise 24: Units of Time
	Exercise 25: Units of Time (Again)
	Exercise 26: Current Time
	Exercise 27: Body Mass Index
	Exercise 28: Wind Chill
	Exercise 29: Celsius to Fahrenheit and Kelvin
	Exercise 30: Units of Pressure
	Exercise 31: Sum of the Digits in an Integer
	Exercise 32: Sort 3 Integers
	Exercise 33: Day Old Bread

	2 If Statement Exercises
	Exercise 34: Even or Odd?
	Exercise 35: Dog Years
	Exercise 36: Vowel or Consonant
	Exercise 37: Name that Shape
	Exercise 38: Month Name to Number of Days
	Exercise 39: Sound Levels
	Exercise 40: Name that Triangle
	Exercise 41: Note To Frequency
	Exercise 42: Frequency To Note
	Exercise 43: Faces on Money
	Exercise 44: Date to Holiday Name
	Exercise 45: What Color is that Square?
	Exercise 46: Season from Month and Day
	Exercise 47: Birth Date to Astrological Sign
	Exercise 48: Chinese Zodiac
	Exercise 49: Richter Scale
	Exercise 50: Roots of a Quadratic Function
	Exercise 51: Letter Grade to Grade Points
	Exercise 52: Grade Points to Letter Grade
	Exercise 53: Assessing Employees
	Exercise 54: Wavelengths of Visible Light
	Exercise 55: Frequency to Name
	Exercise 56: Cell Phone Bill
	Exercise 57: Is it a Leap Year?
	Exercise 58: Next Day
	Exercise 59: Is a License Plate Valid?
	Exercise 60: Roulette Payouts

	3 Loop Exercises
	Exercise 61: Average
	Exercise 62: Discount Table
	Exercise 63: Temperature Conversion Table
	Exercise 64: No More Pennies
	Exercise 65: Compute the Perimeter of a Polygon
	Exercise 66: Compute a Grade Point Average
	Exercise 67: Admission Price
	Exercise 68: Parity Bits
	Exercise 69: Approximate π
	Exercise 70: Caesar Cipher
	Exercise 71: Square Root
	Exercise 72: Is a String a Palindrome?
	Exercise 73: Multiple Word Palindromes
	Exercise 74: Multiplication Table
	Exercise 75: Greatest Common Divisor
	Exercise 76: Prime Factors
	Exercise 77: Binary to Decimal
	Exercise 78: Decimal to Binary
	Exercise 79: Maximum Integer
	Exercise 80: Coin Flip Simulation

	4 Function Exercises
	Exercise 81: Compute the Hypotenuse
	Exercise 82: Taxi Fare
	Exercise 83: Shipping Calculator
	Exercise 84: Median of Three Values
	Exercise 85: Convert an Integer to its Ordinal Number
	Exercise 86: The Twelve Days of Christmas
	Exercise 87: Center a String in the Terminal
	Exercise 88: Is it a Valid Triangle?
	Exercise 89: Capitalize It
	Exercise 90: Does a String Represent an Integer?
	Exercise 91: Operator Precedence
	Exercise 92: Is a Number Prime?
	Exercise 93: Next Prime
	Exercise 94: Random Password
	Exercise 95: Random License Plate
	Exercise 96: Check a Password
	Exercise 97: Random Good Password
	Exercise 98: Hexadecimal and Decimal Digits
	Exercise 99: Arbitrary Base Conversions
	Exercise 100: Days in a Month
	Exercise 101: Reduce a Fraction to Lowest Terms
	Exercise 102: Reduce Measures
	Exercise 103: Magic Dates

	5 List Exercises
	Exercise 104: Sorted Order
	Exercise 105: Reverse Order
	Exercise 106: Remove Outliers
	Exercise 107: Avoiding Duplicates
	Exercise 108: Negatives, Zeros and Positives
	Exercise 109: List of Proper Divisors
	Exercise 110: Perfect Numbers
	Exercise 111: Only the Words
	Exercise 112: Below and Above Average
	Exercise 113: Formatting a List
	Exercise 114: Random Lottery Numbers
	Exercise 115: Pig Latin
	Exercise 116: Pig Latin Improved
	Exercise 117: Line of Best Fit
	Exercise 118: Shuffling a Deck of Cards
	Exercise 119: Dealing Hands of Cards
	Exercise 120: Is a List already in Sorted Order?
	Exercise 121: Count the Elements
	Exercise 122: Tokenizing a String
	Exercise 123: Infix to Postfix
	Exercise 124: Evaluate Postfix
	Exercise 125: Does a List contain a Sublist?
	Exercise 126: Generate All Sublists of a List
	Exercise 127: The Sieve of Eratosthenes

	6 Dictionary Exercises
	6.1 Exercise 128: Reverse Lookup
	6.2 Exercise 129: Two Dice Simulation
	6.3 Exercise 130: Text Messaging
	6.4 Exercise 131: Morse Code
	6.5 Exercise 132: Postal Codes
	6.6 Exercise 133: Write Out Numbers in English
	6.7 Exercise 134: Unique Characters
	6.8 Exercise 135: Anagrams
	6.9 Exercise 136: Anagrams Again
	6.10 Exercise 137: Scrabble� Score
	6.11 Exercise 138: Create a Bingo Card
	6.12 Exercise 139: Checking for a Winning Card
	6.13 Exercise 140: Play Bingo

	7 File and Exception Exercises
	Exercise 141: Display the Head of a File
	Exercise 142: Display the Tail of a File
	Exercise 143: Concatenate Multiple Files
	Exercise 144: Number the Lines in a File
	Exercise 145: Find the Longest Word in a File
	Exercise 146: Letter Frequencies
	Exercise 147: Words that Occur Most
	Exercise 148: Sum a List of Numbers
	Exercise 149: Both Letter Grades and Grade Points
	Exercise 150: Remove Comments
	Exercise 151: Two Word Random Password
	Exercise 152: What's that Element Again?
	Exercise 153: A Book with No ``e'' �
	Exercise 154: Names that Reached Number One
	Exercise 155: Gender Neutral Names
	Exercise 156: Most Births in a given Time Period
	Exercise 157: Distinct Names
	Exercise 158: Spell Checker
	Exercise 159: Repeated Words
	Exercise 160: Redacting Text in a File
	Exercise 161: Missing Comments
	Exercise 162: Consistent Line Lengths
	Exercise 163: Words with Six Vowels in Order

	8 Recursion Exercises
	Exercise 164: Total the Values
	Exercise 165: Greatest Common Divisor
	Exercise 166: Recursive Decimal to Binary
	Exercise 167: Recursive Palindrome
	Exercise 168: Recursive Square Root
	Exercise 169: String Edit Distance
	Exercise 170: Possible Change
	Exercise 171: Spelling with Element Symbols
	Exercise 172: Element Sequences
	Exercise 173: Run-Length Decoding
	Exercise 174: Run-Length Encoding

	Part IISolutions
	9 Introduction to Programming Solutions
	Solution to Exercise 1: Mailing Address
	Solution to Exercise 3: Area of a Room
	Solution to Exercise 4: Area of a Field
	Solution to Exercise 5: Bottle Deposits
	Solution to Exercise 6: Tax and Tip
	Solution to Exercise 7: Sum of the First n Positive Integers
	Solution to Exercise 10: Arithmetic
	Solution to Exercise 13: Making Change
	Solution to Exercise 14: Height Units
	Solution to Exercise 17: Heat Capacity
	Solution to Exercise 19: Free Fall
	Solution to Exercise 23: Area of a Regular Polygon
	Solution to Exercise 25: Units of Time (Again)
	Solution to Exercise 28: Wind Chill
	Solution to Exercise 32: Sort 3 Integers
	Solution to Exercise 33: Day Old Bread

	10 If Statement Solutions
	Solution to Exercise 34: Even or Odd?
	Solution to Exercise 36: Vowel or Consonant
	Solution to Exercise 37: Name that Shape
	Solution to Exercise 38: Month Name to Number of Days
	Solution to Exercise 40: Name that Triangle
	Solution to Exercise 41: Note to Frequency
	Solution to Exercise 42: Frequency to Note
	Solution to Exercise 46: Season from Month and Day
	Solution to Exercise 48: Chinese Zodiac
	Solution to Exercise 51: Letter Grade to Grade Points
	Solution to Exercise 53: Assessing Employees
	Solution to Exercise 57: Is it a Leap Year?
	Solution to Exercise 59: Is a License Plate Valid?
	Solution to Exercise 60: Roulette Payouts

	11 Loop Solutions
	Solution to Exercise 64: No more Pennies
	Solution to Exercise 65: Computer the Perimeter of a Polygon
	Solution to Exercise 67: Admission Price
	Solution to Exercise 68: Parity Bits
	Solution to Exercise 70: Caesar Cipher
	Solution to Exercise 72: Is a String a Palindrome?
	Solution to Exercise 74: Multiplication Table
	Solution to Exercise 75: Greatest Common Divisor
	Solution to Exercise 78: Decimal to Binary
	Solution to Exercise 79: Maximum Integer

	12 Function Solutions
	Solution to Exercise 84: Median of Three Values
	Solution to Exercise 86: The Twelve days of Christmas
	Solution to Exercise 87: Center a String in the Terminal
	Solution to Exercise 89: Capitalize it
	Solution to Exercise 90: Does a String Represent an Integer?
	Solution to Exercise 92: Is a Number Prime?
	Solution to Exercise 94: Random Password
	Solution to Exercise 96: Check a Password
	Solution to Exercise 99: Arbitrary Base Conversions
	Solution to Exercise 101: Reduce a Fraction to Lowest Terms
	Solution to Exercise 102: Reduce Measures
	Solution to Exercise 103: Magic Dates

	13 List Solutions
	Solution to Exercise 104: Sorted Order
	Solution to Exercise 106: Remove Outliers
	Solution to Exercise 107: Avoiding Duplicates
	Solution to Exercise 108: Negatives, Zeros and Positives
	Solution to Exercise 110: Perfect Numbers
	Solution to Exercise 113: Formatting a List
	Solution to Exercise 114: Random Lottery Numbers
	Solution to Exercise 118: Shuffling a Deck of Cards
	Solution to Exercise 121: Count the Elements
	Solution to Exercise 122: Tokenizing a String
	Solution to Exercise 126: Generate All Sublists of a List
	Solution to Exercise 127: The Sieve of Eratosthenes

	14 Dictionary Solutions
	Solution to Exercise 128: Reverse Lookup
	Solution to Exercise 129: Two Dice Simulation
	Solution to Exercise 134: Unique Characters
	Solution to Exercise 135: Anagrams
	Solution to Exercise 137: ScrabbleTM Score
	Solution to Exercise 138: Create a Bingo Card

	15 File and Exception Solutions
	Solution to Exercise 141: Display the Head of a File
	Solution to Exercise 142: Display the Tail of a File
	Solution to Exercise 143: Concatenate Multiple Files
	Solution to Exercise 148: Sum a List of Numbers
	Solution to Exercise 150: Remove Comments
	Solution to Exercise 151: Two Word Random Password
	Solution to Exercise 153: A Book with No ``e'' �
	Solution to Exercise 154: Names that Reached Number One
	Solution to Exercise 158: Spell Checker
	Solution to Exercise 160: Redacting Text in a File
	Solution to Exercise 161: Missing Comments

	16 Recursion Solutions
	Solution to Exercise 164: Total the Values
	Solution to Exercise 167: Recursive Palindrome
	Solution to Exercise 169: String Edit Distance
	Solution to Exercise 172: Element Sequences
	Solution to Exercise 174: Run-Length Encoding

	Index

