Function Solutions 1 2

Solution to Exercise 84: Median of Three Values

#H#

Compute and display the median of three values entered by the user. This
program includes two implementations of the median function that

demonstrate different techniques for computing the median of three values.

#
Compute the median of three values using if statements Each function that you write
@param a the first value should begin with a com-
@param b the second value ment. Lines beginning with
@param c the third value @param are used to de-
@return the median of values a, b and ¢ scribe the function’s param-
#“ eters. The value returned
def median(a, b, c¢): by the function is describe
ifa<bandb<cora>bandb>c: by a line that begins with
return b @return.
ifb<aanda<corb>aanda>c:
return a
ifc<aand b< corc >aandb > c:
return ¢

Compute the median of three values using the min and max functions
and a little bit of arithmetic

@param a the first value

@param b the second value

@param c the third value

@return the median of values a, b and ¢

The median of three values
def alternateMedian(a, b, c): is the sum of the values, less
return a + b + ¢ - min(a, b, ¢) - max(a, b, ¢) the smallest, less the largest.
© Springer International Publishing Switzerland 2014 115

B. Stephenson, The Python Workbook, DOI 10.1007/978-3-319-14240-1_12

This copy belongs to 'acha04'

116 12 Function Solutions

Display the median of 3 values entered by the user
def main():

x = float(input("Enter the first value: "))
float (input ("Enter the second value: "))
float (input ("Enter the third value: "))

z

print("The median value is:", median(x, y, z))
print("Using the alternative method, it is:", alternateMedian(x, y, z))

Call the main function
main()

Solution to Exercise 86: The Twelve days of Christmas

#Hi

Generate the complete lyrics for the song The Twelve Days of Christmas.
#

from int_ordinal import intToOrdinal

The function that was written for the previous exercise is imported into this program so that the
code for converting from an integer to its ordinal number does not have to be duplicated here.

Generate and display one verse of The Twelve Days of Christmas

@param n the verse to generate

@return (none)

def displayVerse(n):
print("One the", intToOrdinal(n), "day of Christmas")
print("my true love sent to me:")

if n >= 12:

print("Twelve drummers drumming,")
if n >= 11:

print("Eleven pipers piping,")
if n >= 10:

print("Ten lords a leaping,")
if n >= 9:

print("Nine ladies dancing,")
if n >= 8:

print("Eight maids a milking,")
ifn>=7:

print("Seven swans a swimming,")
if n >= 6:

print("Six geese a laying,")
if n >= 6:

print("Five golden rings,")
if n >= 4:

print("Four calling birds,")
if n >= 3:

print("Three French hens,")

This copy belongs to 'acha04'

Solution to Exercise 86:The Twelve days of Christmas

17

if n >= 2:
print("Two turtle doves,")
if n ==
print("A", end=" ")
else:

print("And a", end=" ")
print("partridge in a pear tree.")
print ()

Display all 12 verses of the song
def main():
for verse in range(1, 13):
displayVerse(verse)

Call the main function
main()

Solution to Exercise 87: Center a String in the Terminal

##

Center a string of characters within a certain width.
#

WIDTH = 80

Create a new string that will be centered within a given width when it is printed.
@param s the string that will be centered
@param width the width in which the string will be centered
@return a new copy of s that contains the leading spaces needed so that
s will appear centered when it is printed.
def center(s, width):

If the string is too long to center, then the original string is returned

if width < len(s):

return s

Compute the number of spaces needed and generate the result

spaces = (width - len(s)) // 2 The // operator is used so

result = " " * spaces + s that the result of the division

will be truncated to an in-

return result teger. This is necessary be-

cause a string can only be

Demonstrate the center function replicated an integer num-
def main(): ber of times.

print (center("A Famous Story", WIDTH))
print (center("by:", WIDTH))

print (center("Someone Famous", WIDTH))
print()

print("Once upon a time...")

Call the main function
main()

This copy belongs to 'acha04'

118

12 Function Solutions

Solution to Exercise 89: Capitalize it

#i

Improve the capitalization of a string by replacing **i"" with **

capitalizing the first letter of each sentence.
i

Capitalize the appropriate characters in a string
@param s the string that needs capitalization
@return a new string with the capitalization improved
def capitalize(s):
Correct the capitalization for i
result = s.replace(" i ", "I ")

Capitalize the first character of the string
if len(s) > O:
result = result[0].upper() + \

1" and by

The replace method re-
places all occurences of its
first parameter with its sec-
ond parameter in the string
on which it is invoked.

result[1 : len(result)]
Capitalize the first letter that follows a **.”", **!"" or **7"*
pos = 0
while pos < len(s):
if result[pos] == "." or result[pos] == "!" or result[pos] == "?":

Move past the **.”’, *“!"’ or **?”’

pos = pos + 1

Move past any spaces
while pos < len(s) and result[pos] == " ":
pos = pos + 1

If we haven’t reached the end of the string then replace
the current character with its uppercase equivalent
if pos < len(s):
result = result[0 : pos] + \
result[pos].upper() + \
result[pos + 1 : len(result)]

Move to the next character
pos = pos + 1

return result

Demonstrate the capitalize function
def main():
s = input("Enter some text: ")
capitalized = capitalize(s)
print("It is capitalized as:", capitalized)

Call the main function
main()

This copy belongs to 'acha04'

Using a colon inside of
square brackets retrieves a
portion of a string. The
characters that are retrieved
start at the position that ap-
pears to the left of the colon,
going up to (but not includ-
ing) the position that ap-
pears to the right of the
colon.

Solution to Exercise 90: Does a String Represent an Integer? 119

Solution to Exercise 90: Does a String Represent an Integer?

##

Determine whether or not a string entered by the user is an integer.
#

Determine if a string contains a valid representation of an integer
@param s the string to check
@return True if s represents an integer. False otherwise.
#
def isInteger(s):
Remove whitespace from the beginning and end of the string
s = s.strip()

Determine if the remaining characters form a valid integer

if (s[0] == "+" or s[0] == "-") and s[1:].isdigit():
return True
if s.isdigitQ: The isdigit method returns true if and only
return True if the string is at least one character in length
return False and all of the characters in the string are digits.

Demonstrate the isInteger function
def main():
s = input("Enter a string: ")
if isInteger(s):
print("That string represents an integer.")
else:
print("That string does not represent an integer.")

Only call the main function when this file has not been imported
if _name.. == "_main..":
main()

The __name___ variable is automatically assigned a value by Python when the program starts
running. It contains "__main__" when the file is executed directly by Python. It contains the
name of the module when the file is imported into another program.

Solution to Exercise 92:1s a Number Prime?

i
Determine if a number entered by the user is prime.
#

Determine whether or not a number is prime
@param n the integer to test
@return True if the number is prime, False otherwise
def isPrime(n):
if n <= 1:
return False

This copy belongs to 'acha04'

120 12 Function Solutions

Check each number from 2 up to but not including n to see if it divides evenly into n
for i in range(2, n):
if n % i == 0:
return False
return True

Ifn % i == 0 then n isevenly divisible by
i, indicating that n is not prime.

Determine if a number entered by the user is prime
def main():
value = int(input("Enter an integer: "))
if isPrime(value):
print(value,"is prime.")
else:
print(value,"is not prime.")

Call the main function if the file has not been imported
if _name__ == "_main_":
main()

Solution to Exercise 94: Random Password

#it

Generate and display a random password containing between 7 and 10 characters.
#

from random import randint

SHORTEST = 7
LONGEST = 10
MIN_ASCII = 33
MAX_ASCII = 126

Generate a random password

@return a string containing a random password

def randomPassword():
Select a random length for the password
randomLength = randint (SHORTEST, LONGEST)

Generate an appropriate number of random characters, adding each one to the end of result
result = ""
for i in range(randomLength):

randomChar = chr(randint (MIN_.ASCII, MAX_ASCII)) The chr function takes an

result = result + randomChar ASCII code as its parame-
ter. It returns a string con-

Return the random password taining the character with
return result that ASCII code as its result.

Generate and display a random password
def main():
print("Your random password is:", randomPassword())

Call the main function only if the module is not imported

if _name__ == "_main_":
main()

This copy belongs to 'acha04'

Solution to Exercise 96: Check a Password 121

Solution to Exercise 96: Check a Password

it
Check whether or not a password is good.
#

Check whether or not a password is good. A good password is at least 8 characters
long and contains an uppercase letter, a lowercase letter and a number.
@param password the password to check
@return True if the password is good, False otherwise
def checkPassword(password) :
has_upper = False
has_lower = False
has_num = False

Check each character in the password and see which requirement it meets
for ch in password:
if ch >= "A" and ch <= "Z":
has_upper = True
elif ch >= "a" and ch <= "z":
has_lower = True
elif ch >= "0" and ch <= "9":
has num = True

If the password has all 4 properties
if len(password) >= 8 and has_upper and has_lower and has_ num:
return True

The password is missing at least on property
return False

Demonstrate the password checking function
def main():
p = input("Enter a password: ")
if checkPassword(p):
print("That’s a good password.")
else:
print("That isn’t a good password.")

Call the main function only if the file has not been imported into another program
if _name__ == "_main_ ":
main()

Solution to Exercise 99: Arbitrary Base Conversions

i
Convert a number from one base to another. Both the source base and the

destination base must be between 2 and 16.
#

from hex.digit import *

This copy belongs to 'acha04'

122

12 Function Solutions

The hex_digit module contains the functions hex2int and int 2hex which were developed
while solving Exercise 98. Using import * imports all of the functions from that module.

Convert a number from base 10 to base n

@param num the base 10 number to convert
@param new_base the base to convert to

@return the string of digits in new_base
def dec2n(num, new.base):

Generate the representation of num in base new_base, storing it in result

result = ""
q = num

Perform the body of the loop once
r = q % new._base
result = int2hex(r) + result
q = q // new.base

Continue looping until q ==0

while q > 0:
r = q % new.base
result = int2hex(r) + result
q = q // new.base

Return the result
return result

Convert a number from base b to base 10

@param num the base b number, stored in a string

@param b the base of the number to convert
@return the base 10 number
def n2dec(num, b):

decimal = 0

power = 0

Process each digit in the base b number
for i in range(len(num)):
decimal = decimal * b
decimal = decimal + hex2int(num[i])

Return the result
return decimal

Convert a number between two arbitrary bases
def main():
Read the number from the user

The base b number must be
stored in a string because it
may contain letters that rep-
resent digits in bases larger
than 10.

from_base = int(input("Enter the base to convert from: "))
fromnum = input("Enter a sequence of digits in that base: ")

This copy belongs to 'acha04'

Solution to Exercise 99: Arbitrary Base Conversions

123

Convert to base 10 and display the result
dec = n2dec(from.num, from base)
print("That’s %d in base 10." % dec)

Convert to a new base and display the result

to_base = int(input("Enter the base to convert to: "))
tonum = dec2n(dec, to.base)

print("That’s %s in base %d." % (to_num, to_base))

Solution to Exercise 101: Reduce a Fraction to Lowest Terms

##
Reduce a fraction to its lowest terms.
#

Compute the greatest common divisor of two integers.
@param n the first integer under consideration (must be non-zero)
@param m the second integer under consideration (must be non-zero)
@return the greatest common divisor of the integers
def ged(n, m):
Initialize d to the smaller of n and m
d = min(n, m)

Use a while loop to find the greatest common divisor of n and m
whilen %4 d !'=0orm?%d != 0:
d=d-1

return d

This function used a loop to achieve its goal. There is also an elegant solution for finding the
greatest common divisor of two integers that uses recursion. The recursive solution is explored in
a later exercise.

Reduce a fraction to lowest terms.
@param the integer numerator of the fraction
@param the integer denominator of the fraction (must be non-zero)
@return the numerator and denominator of the reduced fraction
def reduce(num, den):

If the numerator is 0 then the reduced fractionis 0/ 1

if num ==

return (0, 1)

Compute the greatest common divisor of the numerator and denominator
g = gcd(num, den)

This copy belongs to 'acha04'

124 12 Function Solutions

Divide both the numerator and denominator
by the ged and return the result

return (num // g, den // g) We have used the integer

division operator, //, so

Read the fraction from the user and display the reduced fraction that we return a result like

def main(): (1, 3) instead of (1.0,
Read the input from the user 3505

num = int(input("Enter the numerator: "))
den = int(input("Enter the denominator: "))

Compute the reduced fraction
(n, d) = reduce(num, den)

Display the result
print("%d//d can be reduced to %d/%d." % (num, den, n, d))

Call the main function
main()

Solution to Exercise 102: Reduce Measures

##

Reduce an imperial measurement so that it is expressed using the largest possible units of
measure. For example, 59 teaspoons is reduced to 1 cup, 3 tablespoons, 2 teaspoons.

#

TSP_PER.TBSP = 3

TSP_PER_CUP = 48

Reduce an imperial measurement so that it is expressed using the largest possible
units of measure.
@param num the number of units that need to be reduced
@param unit the unit of measure (cup, tablespoon or teaspoon)
@return a string representing the measurement in reduced form
def reduceMeasure(num, unit):
Compute the number of teaspoons that the parameters represent
unit = unit.lower()

The unit is converted to lowercase by invoking the 1ower method on unit and storing the result
into the same variable. This allows the user to use any mixture of uppercase and lowercase letters
when specifying the unit.

if unit == "teaspoon" or unit == "teaspoons":
teaspoons = num

elif unit == "tablespoon" or unit == "tablespoons":
teaspoons = num * TSP_PER_TBSP
elif unit == "cup" or unit == "cups":

teaspoons = num * TSP_PER_CUP

This copy belongs to 'acha04'

Solution to Exercise 102: Reduce Measures 125

Convert the number of teaspoons to the largest possible units of measure
cups = teaspoons // TSP_PER.CUP

teaspoons = teaspoons - cups * TSP_PER_CUP

tablespoons = teaspoons // TSP_PER.TBSP

teaspoons = teaspoons - tablespoons * TSP_PER_TBSP

Generate the result string
result = ""

Add the number of cups to the result string (if any)
if cups > 0:
result = result + str(cups) + " cup"
Make cup plural if there is more than one
if cups > 1:
result = result + "s"

Add the number of tablespoons to the result string (if any)
if tablespoons > 0:
Include a comma if there were some cups
if result != "":
result = result + ", "

result = result + str(tablespoons) + " tablespoon"
Make tablespoon plural if there is more than one
if tablespoons > 1:

result = result + "s"

Add the number of teaspoons to the result string (if any)
if teaspoons > 0:
Include a comma if there were some cups and/or tablespoons
if result != "":
result = result + ", "

result = result + str(teaspoons) + " teaspoon"
Make teaspoons plural if there is more than one
if teaspoons > 1:

result = result + "s"

Handle the case where the number of units was 0
if result == "":
result = "O teaspoons"

return result

Several test cases are included in this program. They exercise a variety of different combinations
of zero, one and multiple occurences of the different units of measure. While these test cases are
reasonably thorough, they do not guarantee that the program is bug free.

This copy belongs to 'acha04'

126 12 Function Solutions

Demonstrate the reduceMeasure function by performing several reductions

def main():
print("69 teaspoons is %s." % reduceMeasure(59, "teaspoons"))
print("59 tablespoons is %s." % reduceMeasure(59, "tablespoons"))
print ("1 teaspoon is %s." % reduceMeasure(1, "teaspoon"))
print("1 tablespoon is %s." % reduceMeasure(1l, "tablespoon"))
print("1 cup is %s." % reduceMeasure(1, "cup"))
print("4 cups is %s." % reduceMeasure(4, "cups"))
print ("3 teaspoons is %s." % reduceMeasure(3, "teaspoons"))
print ("6 teaspoons is %s." % reduceMeasure(6, "teaspoons"))
print("95 teaspoons is %s." % reduceMeasure(95, "teaspoons"))
print("96 teaspoons is %s." % reduceMeasure(96, "teaspoons"))
print ("97 teaspoons is %s.") reduceMeasure(97, "teaspoons"))
print("98 teaspoons is %s." % reduceMeasure(98, "teaspoons"))
print("99 teaspoons is %s." % reduceMeasure(99, "teaspoons"))

Call the main function
main()

Solution to Exercise 103: Magic Dates

#H

Determine all of the magic dates in the 1900s
#

from days.inmonth import daysInMonth

Determine whether or not a date is *‘magic™

@param day the day portion of the date

@param month the month portion of the date

@param year the year portion of the date

@return True if the date is magic, False otherwise
def isMagicDate(day, month, year):

if day * month == year 7 100: The expression year %
return True 100 evaluates to the two
digit year.

return False

Find and display all of the magic dates in the 1900s
def main():
for year in range(1900, 2000):
for month in range(1, 13):
for day in range(1, daysInMonth(month, year) + 1):
if isMagicDate(day, month, year):
print("%02d/%02d/%04d is a magic date." % (day, month, year))

Call the main function
main()

This copy belongs to 'acha04'

	Preface
	Contents
	Part IExercises
	1 Introduction to Programming Exercises
	Exercise 1: Mailing Address
	Exercise 2: Hello
	Exercise 3: Area of a Room
	Exercise 4: Area of a Field
	Exercise 5: Bottle Deposits
	Exercise 6: Tax and Tip
	Exercise 7: Sum of the First n Positive Integers
	Exercise 8: Widgets and Gizmos
	Exercise 9: Compound Interest
	Exercise 10: Arithmetic
	Exercise 11: Fuel Efficiency
	Exercise 12: Distance Between Two Points on Earth
	Exercise 13: Making Change
	Exercise 14: Height Units
	Exercise 15: Distance Units
	Exercise 16: Area and Volume
	Exercise 17: Heat Capacity
	Exercise 18: Volume of a Cylinder
	Exercise 19: Free Fall
	Exercise 20: Ideal Gas Law
	Exercise 21: Area of a Triangle
	Exercise 22: Area of a Triangle (Again)
	Exercise 23: Area of a Regular Polygon
	Exercise 24: Units of Time
	Exercise 25: Units of Time (Again)
	Exercise 26: Current Time
	Exercise 27: Body Mass Index
	Exercise 28: Wind Chill
	Exercise 29: Celsius to Fahrenheit and Kelvin
	Exercise 30: Units of Pressure
	Exercise 31: Sum of the Digits in an Integer
	Exercise 32: Sort 3 Integers
	Exercise 33: Day Old Bread

	2 If Statement Exercises
	Exercise 34: Even or Odd?
	Exercise 35: Dog Years
	Exercise 36: Vowel or Consonant
	Exercise 37: Name that Shape
	Exercise 38: Month Name to Number of Days
	Exercise 39: Sound Levels
	Exercise 40: Name that Triangle
	Exercise 41: Note To Frequency
	Exercise 42: Frequency To Note
	Exercise 43: Faces on Money
	Exercise 44: Date to Holiday Name
	Exercise 45: What Color is that Square?
	Exercise 46: Season from Month and Day
	Exercise 47: Birth Date to Astrological Sign
	Exercise 48: Chinese Zodiac
	Exercise 49: Richter Scale
	Exercise 50: Roots of a Quadratic Function
	Exercise 51: Letter Grade to Grade Points
	Exercise 52: Grade Points to Letter Grade
	Exercise 53: Assessing Employees
	Exercise 54: Wavelengths of Visible Light
	Exercise 55: Frequency to Name
	Exercise 56: Cell Phone Bill
	Exercise 57: Is it a Leap Year?
	Exercise 58: Next Day
	Exercise 59: Is a License Plate Valid?
	Exercise 60: Roulette Payouts

	3 Loop Exercises
	Exercise 61: Average
	Exercise 62: Discount Table
	Exercise 63: Temperature Conversion Table
	Exercise 64: No More Pennies
	Exercise 65: Compute the Perimeter of a Polygon
	Exercise 66: Compute a Grade Point Average
	Exercise 67: Admission Price
	Exercise 68: Parity Bits
	Exercise 69: Approximate π
	Exercise 70: Caesar Cipher
	Exercise 71: Square Root
	Exercise 72: Is a String a Palindrome?
	Exercise 73: Multiple Word Palindromes
	Exercise 74: Multiplication Table
	Exercise 75: Greatest Common Divisor
	Exercise 76: Prime Factors
	Exercise 77: Binary to Decimal
	Exercise 78: Decimal to Binary
	Exercise 79: Maximum Integer
	Exercise 80: Coin Flip Simulation

	4 Function Exercises
	Exercise 81: Compute the Hypotenuse
	Exercise 82: Taxi Fare
	Exercise 83: Shipping Calculator
	Exercise 84: Median of Three Values
	Exercise 85: Convert an Integer to its Ordinal Number
	Exercise 86: The Twelve Days of Christmas
	Exercise 87: Center a String in the Terminal
	Exercise 88: Is it a Valid Triangle?
	Exercise 89: Capitalize It
	Exercise 90: Does a String Represent an Integer?
	Exercise 91: Operator Precedence
	Exercise 92: Is a Number Prime?
	Exercise 93: Next Prime
	Exercise 94: Random Password
	Exercise 95: Random License Plate
	Exercise 96: Check a Password
	Exercise 97: Random Good Password
	Exercise 98: Hexadecimal and Decimal Digits
	Exercise 99: Arbitrary Base Conversions
	Exercise 100: Days in a Month
	Exercise 101: Reduce a Fraction to Lowest Terms
	Exercise 102: Reduce Measures
	Exercise 103: Magic Dates

	5 List Exercises
	Exercise 104: Sorted Order
	Exercise 105: Reverse Order
	Exercise 106: Remove Outliers
	Exercise 107: Avoiding Duplicates
	Exercise 108: Negatives, Zeros and Positives
	Exercise 109: List of Proper Divisors
	Exercise 110: Perfect Numbers
	Exercise 111: Only the Words
	Exercise 112: Below and Above Average
	Exercise 113: Formatting a List
	Exercise 114: Random Lottery Numbers
	Exercise 115: Pig Latin
	Exercise 116: Pig Latin Improved
	Exercise 117: Line of Best Fit
	Exercise 118: Shuffling a Deck of Cards
	Exercise 119: Dealing Hands of Cards
	Exercise 120: Is a List already in Sorted Order?
	Exercise 121: Count the Elements
	Exercise 122: Tokenizing a String
	Exercise 123: Infix to Postfix
	Exercise 124: Evaluate Postfix
	Exercise 125: Does a List contain a Sublist?
	Exercise 126: Generate All Sublists of a List
	Exercise 127: The Sieve of Eratosthenes

	6 Dictionary Exercises
	6.1 Exercise 128: Reverse Lookup
	6.2 Exercise 129: Two Dice Simulation
	6.3 Exercise 130: Text Messaging
	6.4 Exercise 131: Morse Code
	6.5 Exercise 132: Postal Codes
	6.6 Exercise 133: Write Out Numbers in English
	6.7 Exercise 134: Unique Characters
	6.8 Exercise 135: Anagrams
	6.9 Exercise 136: Anagrams Again
	6.10 Exercise 137: Scrabble� Score
	6.11 Exercise 138: Create a Bingo Card
	6.12 Exercise 139: Checking for a Winning Card
	6.13 Exercise 140: Play Bingo

	7 File and Exception Exercises
	Exercise 141: Display the Head of a File
	Exercise 142: Display the Tail of a File
	Exercise 143: Concatenate Multiple Files
	Exercise 144: Number the Lines in a File
	Exercise 145: Find the Longest Word in a File
	Exercise 146: Letter Frequencies
	Exercise 147: Words that Occur Most
	Exercise 148: Sum a List of Numbers
	Exercise 149: Both Letter Grades and Grade Points
	Exercise 150: Remove Comments
	Exercise 151: Two Word Random Password
	Exercise 152: What's that Element Again?
	Exercise 153: A Book with No ``e'' �
	Exercise 154: Names that Reached Number One
	Exercise 155: Gender Neutral Names
	Exercise 156: Most Births in a given Time Period
	Exercise 157: Distinct Names
	Exercise 158: Spell Checker
	Exercise 159: Repeated Words
	Exercise 160: Redacting Text in a File
	Exercise 161: Missing Comments
	Exercise 162: Consistent Line Lengths
	Exercise 163: Words with Six Vowels in Order

	8 Recursion Exercises
	Exercise 164: Total the Values
	Exercise 165: Greatest Common Divisor
	Exercise 166: Recursive Decimal to Binary
	Exercise 167: Recursive Palindrome
	Exercise 168: Recursive Square Root
	Exercise 169: String Edit Distance
	Exercise 170: Possible Change
	Exercise 171: Spelling with Element Symbols
	Exercise 172: Element Sequences
	Exercise 173: Run-Length Decoding
	Exercise 174: Run-Length Encoding

	Part IISolutions
	9 Introduction to Programming Solutions
	Solution to Exercise 1: Mailing Address
	Solution to Exercise 3: Area of a Room
	Solution to Exercise 4: Area of a Field
	Solution to Exercise 5: Bottle Deposits
	Solution to Exercise 6: Tax and Tip
	Solution to Exercise 7: Sum of the First n Positive Integers
	Solution to Exercise 10: Arithmetic
	Solution to Exercise 13: Making Change
	Solution to Exercise 14: Height Units
	Solution to Exercise 17: Heat Capacity
	Solution to Exercise 19: Free Fall
	Solution to Exercise 23: Area of a Regular Polygon
	Solution to Exercise 25: Units of Time (Again)
	Solution to Exercise 28: Wind Chill
	Solution to Exercise 32: Sort 3 Integers
	Solution to Exercise 33: Day Old Bread

	10 If Statement Solutions
	Solution to Exercise 34: Even or Odd?
	Solution to Exercise 36: Vowel or Consonant
	Solution to Exercise 37: Name that Shape
	Solution to Exercise 38: Month Name to Number of Days
	Solution to Exercise 40: Name that Triangle
	Solution to Exercise 41: Note to Frequency
	Solution to Exercise 42: Frequency to Note
	Solution to Exercise 46: Season from Month and Day
	Solution to Exercise 48: Chinese Zodiac
	Solution to Exercise 51: Letter Grade to Grade Points
	Solution to Exercise 53: Assessing Employees
	Solution to Exercise 57: Is it a Leap Year?
	Solution to Exercise 59: Is a License Plate Valid?
	Solution to Exercise 60: Roulette Payouts

	11 Loop Solutions
	Solution to Exercise 64: No more Pennies
	Solution to Exercise 65: Computer the Perimeter of a Polygon
	Solution to Exercise 67: Admission Price
	Solution to Exercise 68: Parity Bits
	Solution to Exercise 70: Caesar Cipher
	Solution to Exercise 72: Is a String a Palindrome?
	Solution to Exercise 74: Multiplication Table
	Solution to Exercise 75: Greatest Common Divisor
	Solution to Exercise 78: Decimal to Binary
	Solution to Exercise 79: Maximum Integer

	12 Function Solutions
	Solution to Exercise 84: Median of Three Values
	Solution to Exercise 86: The Twelve days of Christmas
	Solution to Exercise 87: Center a String in the Terminal
	Solution to Exercise 89: Capitalize it
	Solution to Exercise 90: Does a String Represent an Integer?
	Solution to Exercise 92: Is a Number Prime?
	Solution to Exercise 94: Random Password
	Solution to Exercise 96: Check a Password
	Solution to Exercise 99: Arbitrary Base Conversions
	Solution to Exercise 101: Reduce a Fraction to Lowest Terms
	Solution to Exercise 102: Reduce Measures
	Solution to Exercise 103: Magic Dates

	13 List Solutions
	Solution to Exercise 104: Sorted Order
	Solution to Exercise 106: Remove Outliers
	Solution to Exercise 107: Avoiding Duplicates
	Solution to Exercise 108: Negatives, Zeros and Positives
	Solution to Exercise 110: Perfect Numbers
	Solution to Exercise 113: Formatting a List
	Solution to Exercise 114: Random Lottery Numbers
	Solution to Exercise 118: Shuffling a Deck of Cards
	Solution to Exercise 121: Count the Elements
	Solution to Exercise 122: Tokenizing a String
	Solution to Exercise 126: Generate All Sublists of a List
	Solution to Exercise 127: The Sieve of Eratosthenes

	14 Dictionary Solutions
	Solution to Exercise 128: Reverse Lookup
	Solution to Exercise 129: Two Dice Simulation
	Solution to Exercise 134: Unique Characters
	Solution to Exercise 135: Anagrams
	Solution to Exercise 137: ScrabbleTM Score
	Solution to Exercise 138: Create a Bingo Card

	15 File and Exception Solutions
	Solution to Exercise 141: Display the Head of a File
	Solution to Exercise 142: Display the Tail of a File
	Solution to Exercise 143: Concatenate Multiple Files
	Solution to Exercise 148: Sum a List of Numbers
	Solution to Exercise 150: Remove Comments
	Solution to Exercise 151: Two Word Random Password
	Solution to Exercise 153: A Book with No ``e'' �
	Solution to Exercise 154: Names that Reached Number One
	Solution to Exercise 158: Spell Checker
	Solution to Exercise 160: Redacting Text in a File
	Solution to Exercise 161: Missing Comments

	16 Recursion Solutions
	Solution to Exercise 164: Total the Values
	Solution to Exercise 167: Recursive Palindrome
	Solution to Exercise 169: String Edit Distance
	Solution to Exercise 172: Element Sequences
	Solution to Exercise 174: Run-Length Encoding

	Index

