MTH5125 Actuarial Mathematics II

May 2022 - Solutions

Q1
(a) The Gross Future Loss Random Variable is L_{0} where
if the annual premium is G
$\mathrm{L}_{0}=50120 \mathrm{v}^{\mathrm{k} 59+1}-0.976 \mathrm{G} \ddot{a}_{\overline{K_{59}+1}}$
(b) we seek minimum G such that $\operatorname{Pr}\left(\mathrm{L}_{0}<0\right) \geq 0.96$

Let G_{n} be premium that gives $L_{0}=0$ for $K_{59}=n$
$\operatorname{Pr}\left(\mathrm{L}_{0}<0 \mid \mathrm{G}=\mathrm{G}_{\mathrm{n}}\right)=\operatorname{Pr}\left(\mathrm{K}_{59}>\mathrm{n}\right)$ which we need to be ≥ 0.96
$\operatorname{Pr}\left(K_{59}>n\right) \geq 0.96$ if $I_{59+n} \geq 0.96 I_{59}$
from AM92 Ultimate
$\mathrm{I}_{59}=9354.004$ so $0.96 \mathrm{I}_{59}=8979.844$
$I_{63}=9037 I_{64}=8934$ therefore $n=4$
$\mathrm{G}_{4}=\frac{50120 v^{5}}{0.976 \ddot{a}_{5}}$
if $\mathrm{i}=0.04$
$\mathrm{G}=£ 9116.40$
(c) the equation of value is

PV benefits + PV expenses + PV profit $=$ PV premiums
note need to mention profit here
if the new annual premium is G^{\prime}
PV benefits $=50000 A_{59}$
PV premiums $=\mathrm{G}^{\prime}{ }^{\prime}{ }_{59}$
PV expenses $=120 \mathrm{~A}_{59}+0.024 G^{\prime} \ddot{a ̈}_{59}$
PV profit $=0.02(50000) \mathrm{A}_{59}=1000 \mathrm{~A}_{59}$
so the equation of value becomes
$51120 \mathrm{~A}_{59}=0.976 \mathrm{G}^{\prime} \ddot{a}_{59}$
from AM92 Ultimate
$\ddot{a}_{59}=14.493$ and $\mathrm{A}_{59}=0.44258$
so $\mathrm{G}^{\prime}=£ 1599.46$
(d) profits related to sum assured not good idea because

- link to very few of the cost drivers
- might incentivise sales people poorly
- increases risk of large losses if mortality experience adverse
- sum assured fixed for long term contracts
part a from lecture, parts b, c similar to seminar, part d unseen and higher order
IFoA syllabus 6.1, 6.2
Q2
(a) The equation of value is

PV benefits + PV expenses = PV premiums
for the 82000 sum assured policy let premium be G
$82000 \mathrm{~A}_{62}=0.965 \mathrm{G} \ddot{a}_{62}$
$A_{62}=0.48458$ ä $_{62}=13.401$
so $G=£ 3072.66$
for the 9500 sum assured policy let premium be H
$9500 \mathrm{~A}_{62}=0.965 \mathrm{H}$ ä 62
so $H=£ 355.98$
(b) we first need to calculate the reserves at 31/12/21
duration $\mathrm{t}=2$ and age $=64$
for the 82000 sum assured policy
${ }_{2} \mathrm{~V}=82000 \mathrm{~A}_{64}-0.965$ (3072.66) ${ }^{2}$ ä
$A_{64}=0.51333 \ddot{a}_{64}=12.653$
${ }_{2} \mathrm{~V}=4575.44$
for the 9500 sum assured policy
${ }_{2} V^{\prime}=9500 \mathrm{~A}_{64}-0.965$ (355.98) \ddot{a}_{64}
${ }_{2} \mathrm{~V}^{\prime}=530.07$
There are 15×82000 policies and 24×9500 policies
Therefore DSAR $=15 x(82000-4574.44)+24 x(9500-530.07)=1,376,647$
$E D S=q_{63} \times D S A R=0.011344 \times 1376647=15,617$

If total claims are 19,000 that can only be 2 deaths among 9500 policies
Therefore ADS $=19000-2 \times 530.07=17,940$
Mortality profit $=$ EDS - ADS $=\mathbf{-} £ 2323$ a loss of $£ 2323$
(c) Mortality profit is negative, a loss
there have been 2 deaths from 39 policies $=5.1 \%$
from AM 92 Ultimate q_{63} we expect 1.1\%
however the loss would have been much worse if one of the claims had been from the larger sum assured policies
mortality experience worse than expected
mortality experience by sum assured level better than expected
part a, b similar to seminar but more challenging, part c unseen
IFoA syllabus 6.2
Q3
(a) the equation of value is

2000000 = PV joint life annuity
If the annuity amount per annum is J then
as ${ }_{t} \mathrm{p}_{\mathrm{x}: \mathrm{y}}=e^{-\left(\mu^{R}+\mu^{B}\right) t}$
where μ^{R} is the constant force of mortality for Rowdy and μ^{B} is the constant force of mortality for Bash

PV joint life annuity $=J \int_{0}^{\infty} v^{t} e^{-\left(\mu^{R}+\mu^{B}\right) t} d t$
$=J \int_{0}^{\infty} e^{-(0.14+0.11-\ln (1.02)) t} d t$
$=\frac{J}{0.25+\ln 1.02}$
therefore $\mathrm{J}=2000000 \times 0.269803=£ 539605$ per annum
(b) the reversionary annuity has Rowdy as annuitant and Bash as counter-life we seek $539605 \bar{a}_{B \mid R}=539605\left(\bar{a}_{R}-\bar{a}_{B: R}\right)$
using the same methodology as before
$\bar{a}_{\mathrm{B}: R}=\frac{1}{0.25+\ln 1.02}=3.706413$
$\bar{a}_{\mathrm{R}}=\frac{1}{0.14+\ln 1.02}=6.257719$
so the cost of the reversionary annuity is $539605 \times(6.257719-3.706413)$
$=£ 1, \mathbf{3 7 6}, 698$

part a, b similar to seminar

IFoA syllabus 5.1.1, 5.1.2
Q4
(a) a two-state model

(b) a multi-state model

note that transitions from unemployed and ill back to active are not needed for this insurance product although students will not be penalised for including them (although no transition intensities for these are given in the question).
(c) the annuity to value future premiums is of the form

Premium amount $x \int_{0}^{5} v^{t}{ }_{t} p^{A A} d t$
where ${ }_{t} p^{A A}$ is the probability of remaining in the Alive or Active state from time 0 to t note important here that the upper bound of integral is 5 not ∞

In the 2 state model
${ }_{t} p^{A A}=e^{-0.00324 t}$
In the multi state model
${ }_{t} p^{A A}=e^{-(0.00324+0.00327+0.00892) t}=e^{-0.01543 t}$
As the death transition intensity is the same under both models, the present value of the benefit is the same in each. Therefore the only difference in premiums is the change in annuity value under the premium waiver terms.
if the interest rate is the same under the two models, the increase in premiums under the multi state model is given by the effect of the lower p probability across the bounds of integration
$100\left(\frac{\exp (-(0.01543) 5)-\exp (0)}{\exp (-(0.00324) 5)-\exp (0)}-1\right) \%$
= 362\% higher
part a from lecture, parts b and c unseen and part c challenging and higher order IFoA syllabus 5.1.3

Q5

(a) we first develop the unit fund

	Year 1	Year 2	Year 3
Fund c/f	0	2054.64	4219.20
Premium	2000	2000	2000
Allocated	1980	1980	1980
Bid Offer	-29.70	-29.70	-29.70
Return	146.27	300.37	462.71
Fee	-41.93	-86.11	-132.64
Fund y/e	2054.64	4219.2	6499.57

and then the projected revenue accounts

	Year 1	Year 2	Year 3
Unallocated	20.00	20.00	20.00
Bid Offer	29.70	29.70	29.70
Expenses	-39.00	-39.00	-39.00
Interest	0.21	0.21	0.21
Fee	41.93	86.11	132.64
Surplus	52.84	97.02	143.55

(b) the original NPV is the year end surplus from the projected revenue accounts discounted at the risk discount rate and allowing for survival
profit vector $=(52.84,97.02,143.33)$
from AM92 Ultimate $p_{60}=1-0.008022=0.991978$ and $p_{61}=1-0.009009=0.990991$
profit signature $=(52.84 \times 1,97.02 \times 0.991978,143.33 \times 0.991978 \times 0.990991)$
profit signature $=(52.84,96.24,141.12)$
therefore at $\mathrm{i}^{\mathrm{d}}=0.06$
$N P V=\frac{52.84}{1.06^{1}}+\frac{96.24}{1.06^{2}}+\frac{141.12}{1.06^{3}}=£ 253.99$
therefore the maximum reduction in NPV is 25.40
as the guaranteed death benefit is in year 1 and will only affect the year 1 projected revenue account surplus - the maximum cost of death benefit for this change in NPV is
$25.40 \times 1.06=26.92$
$q_{60}=0.008022$
Therefore the maximum guaranteed death benefit is
Year 1 end unit value + 26.92/0.008022
$=2054.64+3356.27=£ 5410.91$
part a similar seminar, part b uses ideas from seminar but format unseen
IFoA syllabus 6.4, 6.5

