
MTH6105 Algorithmic Graph Theory
(Spring 2024)

Felix Fischer
felix.fischer@qmul.ac.uk

May 7, 2024

MTH6105 (Spring 2024)

ii

Contents

1 Introduction and Basic Definitions 1
1.1 Graphs . 2
1.2 Representations of Graphs . 3
1.3 Graph Isomorphism . 4
1.4 Subgraphs . 6
1.5 Neighborhoods and Degrees . 7
1.6 Digraphs and Networks . 8

2 Paths, Cycles, and Trees 11
2.1 Connectivity . 11
2.2 Trees . 15
2.3 Characterizations of Trees . 16
2.4 Counting Trees . 17
2.5 Spanning Trees . 23

3 Complexity of Algorithms and Problems 25
3.1 Input and Running Time . 26
3.2 Asymptotic Upper Bounds . 27
3.3 Complexity of Problems: P and NP 30

4 Graph Traversal 33
4.1 Breadth-First and Depth-First Search 33
4.2 Connected Components . 36
4.3 Paths and Cycles . 37
4.4 Strongly Connected Components 38
4.5 Directed Cycles . 39

5 Minimum Spanning Trees and Shortest Paths in Networks 43
5.1 Minimum Spanning Trees . 43
5.2 Shortest Paths for Non-Negative Weights 48
5.3 Shortest Directed Paths . 50
5.4 Directed Cycles . 53
5.5 Longest Paths in Directed Acyclic Networks 54

iii

Contents MTH6105 (Spring 2024)

6 Network Flows 57
6.1 Maximum Flows . 57
6.2 Minimum Cuts . 59
6.3 Residual Capacities and Augmenting Paths 60
6.4 The Ford-Fulkerson Algorithm . 63

7 Matchings 65
7.1 Bipartite Graphs . 66
7.2 Maximimum Matchings in Bipartite Graphs 67
7.3 Augmenting Paths . 69
7.4 Saturating Matchings in Bipartite Graphs 72

8 Euler Trails and Tours 75

iv

Chapter 1

Introduction and Basic Definitions

This module provides an introduction to the theory of graphs, with a focus on
algorithms that work with graphs. A graph is a mathematical model for any
situation involving a set of entities that may or may not be in a pairwise relation
with each other. Examples of such situations include the following:

• a road network, where the entities are cities, and two cities are in relation
if there is a direct road between them;

• the World Wide Web, where entities are web pages, and two web pages are
in relation if one links to the other;

• a network of acquaintances, where the entities are individuals, and two
individuals are in relation if they know each other.

Graph theory is a relatively young area of mathematics that has developed
very rapidly. Its origins can be traced back to the work of Leonhard Euler on the
problem of the Seven Bridges of Königsberg, but a comprehensive theory has only
developed in the last hundred years. The first book on graph theory, Theorie der
Endlichen und Unendlichen Graphen by Dénes König, was published in 1936.
Since the 1940s, a major stimulus for the development of graph theory has been
the search for efficient algorithms for network optimization in operations research.

An algorithm is a set of rules or instructions followed to solve a problem. We
will prove results about graphs and develop algorithms for solving problems mod-
eled by a graph. The two will go hand in hand: sometimes a theorem concerning
graphs will help us in developing an algorithm and show that it works correctly
and efficiently, sometimes an algorithm will help us in proving a theorem. An
appealing aspect of graph theory is that it lends itself to visualization, as abstract
ideas can be illustrated by drawing the entities and their relationships as dots
and lines on a piece of paper.

1

1.1. Graphs MTH6105 (Spring 2024)

1.1 Graphs

Definition 1.1 (graph, vertex, edge, endpoints, incidence, adjacency, loop, multi-
ple edge). A graph G is given by a finite set V of vertices and a finite set E of
edges such that V∩E = ∅. Each edge in E is associated with two vertices in V

called its endpoints. We say that an edge is incident to both its endpoints,
or between its endpoints. We say that two vertices u and v are adjacent or
neighbors if there is an edge between u and v. An edge is a loop if both of
its endpoints are the same, and a multiple edge if there is another edge with
the same endpoints.

Given a graph G, we will write V(G) for its set of vertices and E(G) for its set of
edges. Often we will use integers to represent vertices, such that for a graph G

with n vertices V(G) = [n].
We will focus mainly on so-called simple graphs, which do not have any loops

or multiple edges.

Definition 1.2 (simple graph). A graph G is simple if (i) every edge in E(G)

has two distinct endpoints and (ii) for every pair of vertices u, v ∈ V(G) there
is at most one edge incident to both u and v.

When discussing simple graphs, it is convenient to label each edge by its
endpoints and identify the edge by its label. From now on, we will say “the edge
{u, v}” or “the edge uv” to refer to an edge with endpoints u and v. Note that in
this terminology, the edge uv and the edge vu are in fact the same edge. Note
further that by the two properties of simple graphs, the terminology will never
cause confusion: every edge has a label with two vertices, and every label refers to
at most one edge. In other words, there is a bijection between the set of possible
edges of a simple graph with vertex set V and the set of

(
|V |

2

)
unordered pairs of

vertices. This immediately implies our first two results.

Theorem 1.3. A simple graph with n vertices has at most
(
n
2

)
edges.

Corollary 1.4. For any finite set V, there are 2(
|V |
2) distinct simple graphs with

vertex set V.

Example 1.5 (special graphs). Some graphs show up again and again and have
been given a name. These include the following:

• En, the empty graph on n vertices, with V(En) = [n] and E(En) = ∅;

2

1.2. Representations of Graphs MTH6105 (Spring 2024)

v1 v2

v3v4

e5

e4

e6

e2e1
e3

e7 v1

v2

v3

v4

e5

e4e6

e2e1

e3 e7

Figure 1.1: Two different drawings of the graph G with V(G) = {v1, v2, v3, v4} and
E(G) = {e1, e2, e3, e4, e5, e6, e7} where e1 = v1v4, e2 = v1v4, e3 = v2v4, e4 = v2v3,
e5 = v1v2, e6 = v3v4, and e7 = v2v2.

• Kn, the complete graph on n vertices, with V(Kn) = [n] and E(Kn) =

{uv : u, v ∈ [n]};
• Pn, the path on n vertices, with V(Pn) = [n] and E(Pn) = {uv : u, v ∈
[n], |u− v| = 1};

• Cn, the cycle on n ⩾ 3 vertices, with V(Cn) = [n] and E(Cn) = {uv :

u, v ∈ [n], |u− v| = 1} ∪ {1n}.

1.2 Representations of Graphs

A convenient way to specify and discuss graphs is to draw them in the plane. For
a graph G, we do this by drawing a dot for each vertex in V(G) and then place a
line or curve between the two dots corresponding to vertices u and v if and only
if uv ∈ E(G). Figure 1.1 shows two different drawings of the same graph with
four vertices and seven edges. Note that to determine whether the two drawings
show the same graph, only incidences between vertices and edges matter and not
the exact positions of the vertices and edges.

For larger and more complicated graphs, and in cases where we want to ma-
nipulate graphs using a computer, a more useful representation is the incidence
matrix. As the name suggests, this matrix specifies the incidence relation between
vertices and edges.

Definition 1.6 (incidence matrix). The incidence matrix of a graph G is a
matrix with |V(G)| rows corresponding to the vertices of G and |E(G)| columns
corresponding to the edges of G. The entry in row v ∈ V(G) and column
e ∈ E(G) is equal to 2 if e is a loop from v to itself, equal to 1 if v is one of
two distinct endpoints of e, and equal to 0 otherwise.

3

1.3. Graph Isomorphism MTH6105 (Spring 2024)

1
G1

2 3 4

2
G2

3 4 1

3
G3

2 1 4

2

3 4

5

1
G4

2

3 4

5

1
G5

Figure 1.2: Five different graphs. The three graphs on the left are isomorphic to
one another, and the two graphs on the right are isomorphic.

For example, the incidence matrix of the graph in Figure 1.1 is equal to

e1 e2 e3 e4 e5 e6 e7

v1 1 1 0 0 1 0 0

v2 0 0 1 1 1 0 2

v3 0 0 0 1 0 1 0

v4 1 1 1 0 0 1 0

A more convenient representation for simple graphs is the so-called adjacency
matrix.

Definition 1.7 (adjacency matrix). The adjacency matrix of a simple graph
G is a matrix with |V(G)| rows and columns corresponding to the vertices of
G. The entry in row u ∈ V(G) and column v ∈ V(G) is equal to 1 if u is
adjacent to v in G, and equal to 0 otherwise.

For example, the adjacency matrix of P4 is equal to
0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0

 .

Note that all diagonal entries are zero and the matrix is symmetric, corresponding
to the absence of loops and the symmetry of the adjacency relation.

1.3 Graph Isomorphism

Two graphs are the same if and only if they have the same set of vertices and the
same set of edges. As we have seen, the two drawings in Figure 1.1 depict the
same graph.

4

1.3. Graph Isomorphism MTH6105 (Spring 2024)

Figure 1.2, on the other hand, shows five graphs that are all distinct. To
see that this is true, first observe that the three graphs on the left all have four
vertices, while both graphs on the right have five vertices. A graph on the left
can thus not be the same as a graph on the right. Now consider the three graphs
on the left. The edge {1, 4} appears in G2 and G3 but not in G1, while the edge
{1, 2} appears in G1 and G3 but not in G2. Thus the three graphs on the left are
all distinct. Finally the edge {1, 2} appears in G4 but not in G5, so these graphs
must be also be distinct.

You may be thinking at this point that the three graphs on the left look
completely identical, apart from the fact that their vertices have been labeled
differently. This leads us to the notion of isomorphic graphs.

Definition 1.8 (graph isomorphism). Two simple graphs G1 and G2 are iso-
morphic if there exists a bijection ϕ : V(G1) → V(G2) such that uv ∈ E(G1)

if and only if ϕ(u)ϕ(v) ∈ E(G2).

Informally two graphs are isomorphic if we can obtain one from the other by
relabeling the vertices, which is exactly what the function ϕ in Definition 1.8 is
doing. A sensible way to extend this definition to graphs that are not simple
would be to require that the bijection ϕ preserves the number of loops for each
vertex and the number of edges between each pair of vertices.

To see that graphs G1 and G2 in Figure 1.2 are isomorphic, consider the
bijection ϕ : V(G1) → V(G2) with ϕ(1) = 2, ϕ(2) = 3, ϕ(3) = 4, and ϕ(4) = 1.
It is straightforward to verify that for all u, v ∈ V(G1), ϕ(u)ϕ(v) ∈ E(G2) if and
only if uv ∈ E(G1). For example, 12 ∈ E(G1) but 14 /∈ E(G1), and ϕ(1)ϕ(2) =

23 ∈ E(G2) but ϕ(1)ϕ(4) = 21 /∈ E(G2). Similarly, we can show isomorphism of
G1 and G3, of G2 and G3, and of G4 and G5, by finding an appropriate bijection
and verifying that it satisfies the conditions of Definition 1.8.

A necessary condition for two graphs to be isomorphic is that they have the
same number of vertices and the same number of edges. However, deciding
whether two graphs are isomorphic is not straightforward because we have to
find an appropriate bijection or show that none exists.

An alternative way to think about graph isomorphism is by considering unla-
beled graphs. Suppose you draw a graph but do not label any of the vertices. We
can then think of this unlabeled graph as representing the set of graphs that can
be obtained by labeling the vertices in some way. Every pair of graphs G1 and G2

in this set are isomorphic, since one can be obtained from the other by relabeling
vertices: just switch the labeling used to construct G1 from the unlabeled graph
to the labeling used to construct G2. We can in fact show that graph isomor-
phism is an equivalence relation, where each unlabeled graph corresponds to an
equivalence class of this relation containing exactly the set of labeled graphs we
have just described. As an equivalence relation, graph isomorphism in particular

5

1.4. Subgraphs MTH6105 (Spring 2024)

satisfies transitivity. To show that the graphs G1, G2, and G3 in Figure 1.2 are
isomorphic to one another, it would thus suffice to show that G1 is isomorphic to
G2 and that G2 is isomorphic to G3.

Some properties of graphs we will consider are invariant under isomorphism,
and we will consider unlabeled graphs in these cases.

1.4 Subgraphs

Sometimes we want to talk about a smaller part of a given graph. To this end we
introduce the notion of a subgraph.

Definition 1.9 (subgraph). Let G be a graph. Then a graph H is a subgraph
of G if V(H) ⊆ V(G) and E(H) ⊆ E(G).

Note that this definition requires the subgraph H to be a graph, so that the edges
in E(H) must be between vertices in V(H).

To get some intuition for Definition 1.9 it is useful to think about the following
two-step process for generating a subgraph of G:

1. Remove some vertices from V, together with all edges incident to these
vertices.

2. Remove any edges from the remaining set of edges.
It is easy to see that this process produces a subgraph of the original graph, and
that any subgraph can be obtained in this way. In particular, the way in which the
first step is performed guarantees that all remaining edges are between vertices
that were not removed.

By limiting ourselves to only the first step of the process, we obtain the more
restrictive notion of an induced subgraph.

Definition 1.10 (induced subgraph). Let G be a graph and X ⊆ V(G). The
induced subgraph of G on vertex set X, denoted G[X], is the subgraph H of
G where V(H) = X and E(H) ⊆ E(G) is the set of all edges in E(G) between
vertices of X.

In Figure 1.3, each of the four graphs at the bottom is a subgraph of G. Only the
rightmost of them is also an induced subgraph, specifically the induced subgraph
G[{1, 2, 3, 4}]. It is worth noting that every graph is both a subgraph and an
induced subgraph of itself.

Given a graph G and two subgraphs G1 and G2 of G, we will write G1 ∪ G2

for the subgraph of G with V(G1 ∪ G2) = V(G1) ∪ V(G2) and E(G1 ∪ G2) =

E(G1)∪E(G2), and G1∩G2 for the subgraph of G with V(G1∩G2) = V(G1)∩V(G2)

and E(G1 ∩G2) = E(G1) ∩ E(G2). It is obvious from Definition 1.9 that G1 ∪G2

and G1 ∩G2 are indeed subgraphs of G.

6

1.5. Neighborhoods and Degrees MTH6105 (Spring 2024)

2

3 4

5

1
G

2

3 4

5

1

3 4

1

2

3 4

1

2

3 4

1

Figure 1.3: A graph G and four of its subgraphs. The right-most subgraph is an
induced subgraph of G, whereas the other three are not.

1.5 Neighborhoods and Degrees

If we view a graph from the perspective of a particular vertex, two objects of
obvious interest are the identity and the number of its neighbors.

Definition 1.11 (neighborhood, degree). Let G be a graph and v ∈ V(G).
Then the neighborhood NG(v) of v in G is the set of vertices adjacent to v.
The degree dG(v) of v in G is the number of edges incident to v, where loops
are counted twice.

When the graph G is clear from the context, we will write N(v) instead of NG(v)

and d(v) instead of dG(v). Note that in simple graphs, d(v) = |N(v)|.
Note that we can easily determine the degree of a vertex in a graph both

from a drawing of the graph and from its incidence or adjacency matrix. Given a
drawing we can simply count the edges incident to a particular vertex. Given an
incidence or adjacency matrix, the degree of a vertex is equal to the sum of the
entries in the row corresponding to that vertex.

The following simple result about the sum of degrees in a graph is also called
the handshaking lemma, because it relates the number of handshakes at a dinner
party to the number of hands each guest has shaken and implies that an even
number of guests must have shaken an odd number of hands.

Lemma 1.12. For any graph G,
∑

v∈V(G) d(v) = 2|E(G)|.

Proof. Consider an edge e ∈ E(G) with endpoints u, v ∈ V(G). If e is a loop,
it contributes two to

∑
v∈V(G) d(v). Otherwise it contributes one each to d(u)

and d(v), and thus again two to
∑

v∈V(G) d(v). This is true for every edge, so

7

1.6. Digraphs and Networks MTH6105 (Spring 2024)

∑
v∈V(G) d(v) = 2|E(G)|.

Corollary 1.13. In any graph, the number of vertices of odd degree is even.

1.6 Digraphs and Networks

In some situations it may not be enough to say that two vertices are related, the
direction of the relationship may also be important. This motivates the definition
of a directed graph.

Definition 1.14 (digraph, arc, tail, head). A directed graph or digraph D is a
graph in which every edge e has been given a direction from one endpoint u

to the other endpoint v. In this case we call e as an arc from u to v, and
respectively refer to u and v as the tail and head of e.

Given a digraph D, we write A(D) for its set of arcs and note that each element
of A(D) corresponds to an ordered pair of vertices.

Definition 1.15 (outdegree, indegree). Let D be a digraph and v ∈ V(D).
Then the outdegree d+

D(v) of v in D is the number of arcs with tail v, and
the indegree d−

D(v) of v in D is the number of arcs with head v.

When the graph G is clear from the context, we will write d+(v) instead of d+
G(v)

and d−(v) instead of d−
G(v).

The following is a variant of the handshaking lemma. We leave its proof as an
exercise.

Lemma 1.16. For any digraph D,
∑

v∈V(D) d
+(v) =

∑
v∈V(D) d

−(v) =

|A(D)|.

Definition 1.17 (network, weight). A network is a graph or digraph G together
with a function w : E(G) → R that assigns a weight w(e) to each edge or
arc.

Digraphs and networks can be drawn in the plane with arrows to indicate arcs,
and labels on lines or arrows to indicate the weight of the corresponding edges or
arcs. For larger digraphs or networks, or storage in a computer, representation
by a matrix will again be useful. The adjacency matrix of a simple digraph D

for example, is the |V(D)|× |V(D)| matrix with entry 1 in row u and column v if
uv ∈ A(D). Unlike adjacency matrices of graphs, adjacency matrices of digraphs

8

1.6. Digraphs and Networks MTH6105 (Spring 2024)

1

2

3 5

4

6

2

3

2

2

1

1

3

1

4

0 2 3 ∞ ∞ ∞∞ 0 ∞ 2 ∞ ∞∞ 2 0 ∞ 1 ∞∞ ∞ 1 0 3 1∞ ∞ ∞ ∞ 0 4∞ ∞ ∞ ∞ ∞ 0

Figure 1.4: A (directed) network and its distance matrix.

are thus not typically symmetric. For networks, we can also use the entries of the
matrix to represent weights. However, when using the equivalent of an adjacency
matrix to represent a simple network, we have to be careful to distinguish between
edges or arcs with weight zero and edges and arcs that are not part of the network.
In cases where weights correspond to distances, it makes sense to represent the
latter by an entry of ∞ in a distance matrix, following the intuition that it would
take infinitely long to traverse an edge or arc that does not exist. An example of
a directed network and its distance matrix are shown in Figure 1.4.

9

1.6. Digraphs and Networks MTH6105 (Spring 2024)

10

Chapter 2

Paths, Cycles, and Trees

We will now move beyond the neighborhood of a vertex to vertices that can be
reached by following a sequence of edges. This idea is captured by the notion of
a walk, and by various specializations.

Definition 2.1 (walk, trail, path, tour, cycle). A walk in a graph is an alter-
nating sequence of vertices and edges in which each edge is preceded by one
of its endpoints and followed by the other. The length of a walk is equal to
the number of edges in the sequence. A walk is a u−v-walk if it starts with
vertex u and ends with vertex v, and closed if it starts and ends with the
same vertex. A trail is a walk in which all edges are distinct. A path is a
walk in which all vertices are distinct. A tour is a closed trail. A cycle is a
tour containing at least one edge in which all vertices except the first and last
are distinct. A directed walk (trail, path, tour, cycle) in a digraph is a walk
(trail, path, tour, cycle) where each arc is preceded by its tail and followed
by its head.

Note that we could have alternatively defined a path of length k in a graph G

as a subgraph of G isomorphic to Pk+1, and a cycle of length k in G as a subgraph
of G isomorphic to Ck.

2.1 Connectivity

Intuitively, existence of a u−v-path in a graph G means that there is some way
to reach v from u by traversing the edges of G, and the length of the path is the
number of edges it traverses.

The following definition captures those graphs for which we can travel from
any vertex to any other vertex.

11

2.1. Connectivity MTH6105 (Spring 2024)

Definition 2.2 (connected). A graph G is connected if for every pair of ver-
tices u, v ∈ V(G) there exists a u−v-walk in G.

As the following result shows, we could in fact replace walks by paths without
affecting the definition of connectivity.

Lemma 2.3. Let G be a graph and u, v ∈ V(G). Then a u−v-path exists in
G if and only if a u−v-walk exists in G.

Proof. The direction from left to right is obvious because every path is also a
walk.

For the direction from right to left, let W = v0e1v1 . . . emvm be a u−v-walk in
G that has minimum length among all u−v-walks in G. Assume for contradiction
that W is not a path. Then some vertex appears more than once in W, i.e.,
vi = vj for 0 ⩽ i < j ⩽ m. Let W ′ = v0e1v1 . . . eiviej+1vj+1 . . . emvm. Then W ′

is a u−v-walk in G, and it is shorter than W, which contradicts the assumption
that W has minimum length. Hence W must be a path.

Corollary 2.4. A graph G is connected if and only if for every pair of vertices
u, v ∈ V(G) there exists a u−v-path in G.

Intuitively, if a graph is not connected, then it must have different sets of
vertices that cannot be reached from one another. This notion is formalized in
the following definition.

Definition 2.5 (connected component). A connected component of a graph
G is a maximal connected subgraph of G, i.e., a connected subgraph of G

that is not itself a subgraph of any other connected subgraph of G.

Note that a connected graph has a single connected component, equal to the
graph itself. Figure 2.1 shows a connected graph G1, and a graph G2 that is
not connected along with its connected components. Note that the connected
components of G2 partition G2, i.e., they do not overlap and together form the
whole graph. We will see that this is in fact true for the connected components
of any graph. We need the following auxiliary lemma.

Lemma 2.6. Let G be a graph, and consider connected subgraphs G1 and
G2 of G such that V(G1) ∩ V(G2) ̸= ∅. Then G1 ∪G2 is connected.

Proof. Let x ∈ V(G1) ∩ V(G2) and consider two arbitrary vertices u, v ∈ V(G1 ∪
G2). If u, v ∈ V(G1), then by connectivity of G1 there exists a u−v-walk in G1

12

2.1. Connectivity MTH6105 (Spring 2024)

2

3 4

5

1
G1

2

3 4

5

1
G2

2

4

1

3

5

Figure 2.1: A connected graph G1, and a graph G2 with its two connected com-
ponents

and thus in G1 ∪ G2. If u, v ∈ V(G2), then by connectivity of G2 there exists
a u−v-walk in G2 and thus in G1 ∪ G2. Finally consider the case where u and
v are in different connected components, and assume without loss of generality
that u ∈ V(G1) and v ∈ V(G2). Since x ∈ V(G1), and by connectivity of G1,
there exists a u−x-walk in G1 and thus in G1 ∪ G2. Since x ∈ V(G2), and by
connectivity of G2, there exists an x−v-walk in G2 and thus in G1 ∪ G2. These
two walks can be combined to form a u−v-walk in G1 ∪ G2. We have shown for
arbitrary u, v ∈ V(G1∪G2) that there exists a u−v-path in G1∪G2, which means
that G1 ∪G2 is connected.

Lemma 2.7. Consider a graph G with connected components G1, . . . , Gm.
Then {V(G1), . . . , V(Gm)} is a partition of V(G), and {E(G1), . . . , E(Gm)} is
a partition of E(G).

Proof. Since every vertex of G belongs to a connected subgraph of G and thus
to a connected component, ∪m

i=1V(Gi) = V(G). Now assume for contradiction
that V(Gi) ∩ V(Gj) ̸= ∅ for some 1 ⩽ i < j ⩽ m. Then Gi ∪ Gj is connected
by Lemma 2.6, which contradicts the assumption that Gi and Gj are connected
components and thus maximal connected subgraphs of G. Thus V(Gi)∩V(Gj) =

∅, and {V(G1), . . . , V(Gm)} is a partition of V(G).
Since every edge of G belongs to a connected subgraph of G and thus to a

connected component, ∪m
i=1E(Gi) = E(G). Assume for contradiction that E(Gi)∩

E(Gj) ̸= ∅ for some 1 ⩽ i < j ⩽ m. Let e ∈ E(Gi) ∩ E(Gj) and let v be one
of the endpoints of e. Then v ∈ V(Gi) ∩ V(Gj), which contradicts the fact that
V(Gi)∩V(Gj) = ∅. Thus E(Gi)∩E(Gj) = ∅, and {E(G1), . . . , E(Gm)} is a partition
of E(G).

For digraphs we can obtain stronger notions of connectivity and connected

13

2.1. Connectivity MTH6105 (Spring 2024)

2

3 4

5

1
D

2

3 4

5

1

Figure 2.2: A digraph D and its three strongly connected components

components by requiring the existence of a directed path between any pair of
vertices.

Definition 2.8 (strongly connected). A digraph D is strongly connected if for
every pair of vertices u, v ∈ V(D) there exists a directed u−v-walk in D.

Again, this definition would not be affected if walks were replaced by paths.
The proof of the following result is similar to that of Lemma 2.3 and left as an
exercise.

Lemma 2.9. Let D be a digraph and u, v ∈ V(G). Then a directed u−v-path
exists in D if and only if a directed u−v-walk exists in D.

Corollary 2.10. A digraph D is strongly connected if and only if for every
pair of vertices u, v ∈ V(D) there exists a directed u−v-path in D.

Definition 2.11 (strongly connected component). A strongly connected com-
ponent of a digraph D is a maximal strongly connected subdigraph of D.

Figure 2.2 shows a digraph and its strongly connected components.

Like connected components, strongly connected components partition the set
of vertices of any graph. The same is no longer true for the set of arcs, as the
digraph in Figure 2.2 illustrates. The proof of the following result is similar to
that of Lemma 2.7 and left as an exercise.

Lemma 2.12. Consider a digraph D with strongly connected components
D1, . . . , Dm. Then {V(D1), . . . , V(Dm)} is a partition of V(D).

14

2.2. Trees MTH6105 (Spring 2024)

Figure 2.3: A tree with six vertices and four leaves

2.2 Trees

And interesting and useful class of graphs can be obtained by combining connect-
edness and the absence of cycles.

Definition 2.13 (acyclic, tree, leaf). A graph G is a acyclic if it does not
contain a cycle, and a tree if it is both connected and acyclic. A vertex
v ∈ V(G) of a tree G is a leaf if d(v) = 1.

As Figure 2.3 illustrates, trees and leafs can be drawn to resemble their natural
counterparts.

Trees will be useful in particular because we will obtain them by visiting all
vertices of a connected graph or connected component of a graph, and will in turn
allow us to answer various questions about the original graph. But let us first
spend some time looking at trees themselves.

Our first result about trees captures the intuition that the removal of a leaf
from a tree produces a smaller tree.

Lemma 2.14 (Tree induction). Every tree with two or more vertices has at
least two leaves. Removing any leaf from a tree with n vertices, along with
its single incident edge, yields a tree with n− 1 vertices.

Proof. Consider a tree T with at least two vertices, and let v0v1 . . . vm−1vm be
a path of maximum length in T . Then v0 ̸= vm, because there are at least two
distinct vertices and there is a path between any two vertices. Moreover, since
the path has maximum length and T is acyclic, the edge v0v1 is the unique edge
incident to v0 and the edge vm−1vm is the unique edge incident to vm. Thus there
are at least two leaves, v0 and vm.

Now consider any leaf v of T , and let u be its unique neighbor. Clearly,
removing vertex v and the edge uv from T results in a graph T ′ with n − 1

vertices. We need to argue that T ′ is connected and acyclic. It is easy to see
that T ′ is acyclic, because T is acyclic and T ′ is a subgraph of T . To see that T ′

is connected, consider two arbitrary vertices s, t ∈ V(T ′). Note that s, t ∈ V(T)

and, because T is connected, there exists an s−t-path in T . Note further that v is

15

2.3. Characterizations of Trees MTH6105 (Spring 2024)

not contained in this s−t-path: v /∈ V(T ′), so v ̸= s and v ̸= t; any other vertex
on the path must have degree at least two, while v has degree one. Hence the
s−t-path is also contained in T ′, which means that T ′ is connected.

The lemma can be used to inductively prove various results concerning trees,
including the following on the number of edges in a tree.

Theorem 2.15. If G is a tree, then |E(G)| = |V(G)|− 1.

Proof. We prove the result by induction on |V(T)|. The result clearly holds when
|V(T)| = 1, since the only acyclic graph with one vertex does not have any edges.
Now consider a tree T with n + 1 ⩾ 2 vertices. By Lemma 2.14, T has a leaf v,
and removing v from T along with its single incident edge results in a tree T ′ with
n vertices. By the induction hypothesis, T ′ has n− 1 edges. Since T has exactly
one more edge than T ′, namely the single edge we removed along with v, T must
have n− 1+ 1 = n edges, as claimed.

2.3 Characterizations of Trees

To gather some evidence that trees are interesting, we can convince ourselves that
they can be characterized in a number of different ways. We will consider three
characterizations that are particularly useful. The first two characterizations show
that trees have a minimal set of edges subject to connectedness and a maximal
set of edges subject to acyclicity.

Theorem 2.16. A graph G is a tree if and only if G is a minimal connected
graph, i.e., if G is connected but removing any edge from E(G) yields a graph
that is not connected.

Proof. For the direction from left to right, assume that G is a tree, i.e., that it
is connected and acyclic. Assume for contradiction that G is not minimal. Then
there exists an edge e ∈ E(G) with endpoints u, v ∈ V(G) such that the graph G ′

with V(G ′) = V(G) and E(G ′) = E(G) \ {e} is connected, and thus a u−v-path in
G that does not contain the edge e. This u−v-path and the edge e form a cycle
in G, which contradicts the assumption that G is acyclic.

For the direction from right to left, assume that G is a minimal connected
graph. Assume for contradiction that G contains a cycle. Let e ∈ E(G) be an
arbitrary edge contained in this cycle, let u, v ∈ V(G) be its endpoints, and let P be
the u−v-path obtained by removing e from the cycle. We claim that the graph G ′

with V(G ′) = V(G) and E(G ′) = E(G)\{e} is connected, contradicting minimality
of G. To see that G ′ is connected, consider arbitrary vertices s, t ∈ V(G ′). Since
G is connected, there exists an s−t-path Q in G. If Q does not contain edge
e, then it is also an s−t-path in G ′. If Q does contain edge e, there exists an

16

2.4. Counting Trees MTH6105 (Spring 2024)

s−t-walk in G that first follows Q from s to u, then follows P from u to v, and
finally follows Q from v to t. This walk does not contain edge e and thus is an
s−t-walk in G ′. In both cases there exists an s−t-path in G ′, and since s and t

were chosen arbitrarily G ′ is connected.

Theorem 2.17. A graph G is a tree if and only if G is a maximal acyclic
graph, i.e., if G does not contain a cycle but adding any edge not in E(G)

creates a cycle.

Proof. For the direction from left to right, assume that G is a tree, i.e., that it
is connected and acyclic. We want to show that the addition of any edge not
in E(G) creates a cycle. Let e be an edge that is not contained in E(G), and let
s, t ∈ V(G) be the endpoints of this edge. Let G ′ be the graph with V(G ′) = V(G)

and E(G ′) = E(G)∪ {e}. Since G is connected, there exists a path v0e1v1 . . . emvm
in G such that v0 = s and vm = t. Then v0e1v1 . . . emvmes is a cycle in G ′.

For the direction from right to left, assume that G acyclic and that the addition
of any edge not in E(G) would create a cycle. We want to show that G is connected.
Consider arbitrary vertices u, v ∈ V(G). If G contains an edge with endpoints
u and v, it clearly also contains a u−v-path. If G does not contain edge e with
endpoints u and v, then by assumption the graph G ′ with V(G ′) = V(G) and
E(G ′) = E(G) ∪ {e} contains a cycle ue1v1 . . . emveu, and the path ue1v1 . . . emv

is a u−v path in G. In both cases there exists a u−v-path in G, and since u and
v were chosen arbitrarily G is connected.

The third characterization works in terms of the existence of a unique path
between any pair of vertices. We leave its proof as an exercise.

Theorem 2.18. A graph G is a tree if and only if it contains no loops and a
unique u−v-path for every u, v ∈ V.

2.4 Counting Trees

Recall that one of our first results, which followed almost immediately from the
definition of a simple graph, gave us the number of distinct simple graphs with
a given set of vertices. It is natural to ask in the same way for the number of
distinct trees, but here the problem seems much more complicated at least if we
approach it directly. A direct approach to determine the number of trees with a
given number of vertices would be to determine first the set of unlabeled trees,
corresponding to the different shapes a tree can take, and then count the number
of distinct labelings for each of the unlabeled trees. Our goal in the next paragraph
will be to convince ourselves that we do not want to count trees directly, so if you
find it somewhat hard to follow just keep reading.

17

2.4. Counting Trees MTH6105 (Spring 2024)

Figure 2.4: Unlabeled trees on 4 and 5 vertices

It is not difficult to see that there is a single tree each with one and two vertices.
For three vertices there is a single unlabeled tree, a path. This tree has 3 distinct
labelings, corresponding to the difference choice of label for the vertex at the
center, so there are 3 distinct trees with three vertices. For four vertices there are
two distinct unlabeled trees, shown on the left of Figure 2.4. The one at the top
has 4!/2 distinct labelings, since each left-to-right labelling and its reverse yield
the same graph. The one at the bottom has only 4 distinct labelings, since for
each possible choice of label for the vertex at the center all labelings of the outer
vertices yield the same graph. There are thus 12+ 4 = 16 distinct trees with four
vertices. Things get even more complicated for five vertices, since there are now
three unlabeled trees, shown on the right of Figure 2.4. We can convince ourselves
that these trees respectively have 5!/2 = 60, 5, and 5!/2 distinct labelings, which
implies that there are 5!/2+ 5+ 5!/2 = 125 distinct trees with four vertices.

By now you are probably convinced that trees are difficult to count directly,
but given the above numbers we may conjecture that the number of labeled trees
with n ⩾ 2 vertices is nn−2. Fortunately a number of elegant ways have been
found to prove this. One of them works by mapping each tree to a distinct code,
specifically a sequence of labels, and then counting the number of codes.

Algorithm 2.19 (Prüfer code). Let T be a tree with V(T) = [n]. The Prüfer
code for T is a sequence of length n − 2 over [n] constructed as follows.
Start with the empty sequence, then repeat the following steps until only
two vertices remain in T .

1. Let v be the leaf in T with smallest label.
2. Let u be the unique vertex adjacent to v in T . Write down u as the

next number in the sequence.
3. Delete v from T , along with its single incident edge uv.

Observe that by Lemma 2.14 the algorithm is guaranteed to produce a code for
every tree with n ⩾ 2 vertices, and that the length of this code will indeed be

18

2.4. Counting Trees MTH6105 (Spring 2024)

n− 2.

Example 2.20. Consider the following trees:

1

2 3

4 5 6

7 8
1 5 3 2 8

4 6 7

The Prüfer codes of these trees respectively are 2, 1, 5, 4, 1, 4 and 5, 5, 3, 3, 2, 2.

We determine the Prüfer code for the tree on the left and leave the tree on the
right as an exercise.

1. The smallest leaf is 3, its unique neighbor 2. Add 2 to the sequence and
delete 3 from the tree to obtain

2 1

2

4 5 6

7 8

2. The smallest leaf is 2, its unique neighbor 1. Add 1 to the sequence and
delete 2 from the tree to obtain

2, 1
1

4 5 6

7 8

3. The smallest leaf is 6, with an edge to 5. Write down 5, delete 6 from the
graph to obtain

2, 1, 5
1

4 5

7 8

4. The smallest leaf is 5, with an edge to 4. Write down 4, delete 5 from the
graph to obtain

2, 1, 5, 4
1 4

7 8

5. The smallest leaf is 7, with an edge to 1. Write down 1, delete 7 from the
graph to obtain

19

2.4. Counting Trees MTH6105 (Spring 2024)

2, 1, 5, 4, 1
1 4

8

6. The smallest leaf is 1, with an edge to 4. Write down 4, delete 1 from graph
to obtain

2, 1, 5, 4, 1, 4
4

8

7. Only two vertices remain, so we are done.
It turns out that distinct trees produce distinct codes and that every sequence

is the code of some tree. This allows us to count trees by counting codes.

Theorem 2.21. For any n ⩾ 2, there are nn−2 distinct trees with n vertices.

Proof. Algorithm 2.19 defines a function from the set of trees with n vertices to
the set of sequences of length n − 2 over [n]. We will show that this function
is injective, i.e., that the algorithm yields different codes for different trees, and
surjective, i.e., that every sequence of length n − 2 over [n] is obtained as the
code of some tree with n vertices. The algorithm thus defines a bijective function
between the two sets, which means that their cardinalities must be the same. The
claim then follows from the fact that there are nn−2 distinct sequences of length
n− 2 over [n].

We will use two simple observations about Algorithm 2.19. First, each vertex
v ∈ V(T) appears exactly d(v) − 1 times in the Prüfer code of T . This is because
the degree of a vertex decreases by one each time its label is written down and the
label of a vertex with degree one is never written down. Second, once the first leaf
v of T has been deleted and its unique neighbor u written down, the rest of the
Prüfer code will be equal to the Prüfer code of the tree T ′ with V(T ′) = V(T)\ {v}

and E(T ′) = E(T) \ {uv}. This is because the algorithm proceeds with T ′ once v

has been written down.
Let us first show that the algorithm yields different codes for different trees.

We do this by induction on n. The claim trivially holds when n = 2, in which
case there is a unique labeled tree and a unique code, the sequence of length zero.
Now assume that n ⩾ 3 and consider two distinct trees T1 and T2 with vertex set
[n]. Let v1 be the leaf with smallest label in T1, and u1 its unique neighbor. Let
v2 the leaf with smallest label in T2, and u2 its unique neighbor. If v1 ̸= v2, then
dT1

(v1) ̸= dT2
(v1) and, since v1 appears dT1

(v1) − 1 times in the Prüfer code for
T1 and dT2

(v2)−1 times in the Prüfer code for T2, T1 and T2 have different Prüfer
codes. If v1 = v2 and u1 ̸= u2, then the Prüfer codes for T1 and T2 start with
different numbers and are thus distinct. Finally, if v1 = v2 and u1 = u2, then
the Prüfer codes for T1 and T2 start with the same number and continue with the

20

2.4. Counting Trees MTH6105 (Spring 2024)

respective Prüfer codes of the trees T1[[n] \ {v1}] and T2[[n] \ {v1}]. These trees are
distinct, and by the induction hypothesis their Prüfer codes are distinct as well.

Let us now show that that every sequence is the code of some tree. We again
do this by induction on n. As before, the claim trivially holds when n = 2. Now
assume that n ⩾ 3 and consider a sequence S of length n − 2 over [n]. Let v be
the smallest element of [n] that does not appear in S, u the first element of S, and
S ′ the sequence obtained by removing the first element from S. S ′ is a sequence
of length n− 3 over [n] \ {v}, so by the induction hypothesis there exists a tree T ′

with V(T ′) = [n] \ {v} whose Prüfer code is S ′. Observe that none of the elements
in S ′ is a leaf in T ′: when an element of S ′ was written down by the algorithm,
it was adjacent to a leaf in a tree with at least three vertices and thus not itself
a leaf. Let T be the tree obtained from T ′ by adding vertex v and edge vu, and
observe that none of the elements of S is a leaf in T . Then the Prüfer code of T
starts with u, which is the smallest leaf in T , and continues with S ′. It is thus
equal to S, so we have found a tree with Prüfer code S.

Since Algorithm 2.19 defines a bijection it must have an inverse, i.e., a proce-
dure that converts a code into a tree. Given a sequence of length n− 2 over [n],
this inverse procedure starts by adding ∗ to the end of the sequence to help us
remember this position. Then it repeats the following until ∗ is at the beginning
of the sequence:

1. Let s be the number at the start of the sequence, and x the smallest number
not currently in the sequence.

2. Add the edge sx to the tree, along with any vertices not already present.
3. Remove s from the start of the sequence, and add x to the end of the

sequence.
Finally, when ∗ is at the start of the sequence, two numbers x, y ∈ [n] are missing
from the sequence. We add the edge xy to the tree, along with any vertices not
already present.

Example 2.22. The tree with Prüfer code 1, 2, 1, 3, 4 is the following:

1

3 4 7

2 6

5

The Prüfer code has 5 elements and thus corresponds to a tree with vertex set [7].
1. Add ∗ to the end of the Prüfer code to obtain the sequence 1, 2, 1, 3, 4, ∗.
2. The first number in the sequence is 1, the smallest number not in the se-

quence is 5. Add the edge {1, 5} to the tree, remove 1 from the beginning of

21

2.4. Counting Trees MTH6105 (Spring 2024)

the sequence and add 5 to the end to obtain

2, 1, 3, 4, *, 5
1

5

3. The first number in the sequence is 2, the smallest number not in the se-
quence is 6. Add the edge {2, 6} to the tree, remove 2 from the beginning of
the sequence and add 6 to the end to obtain

1, 3, 4, *, 5, 6
1

2 6

5

4. The first number in the sequence is 1, the smallest number not in the se-
quence is 2. Add the edge {1, 2} to the tree, remove 1 from the beginning of
the sequence and add 2 to the end to obtain

3, 4, *, 5, 6, 2
1

2 6

5

5. The first number in the sequence is 3, the smallest number not in the se-
quence is 1. Add the edge {3, 1} to the tree, remove 3 from the beginning of
the sequence and add 1 to the end to obtain

4, *, 5, 6, 2, 1 1

3

2 6

5

6. The first number in the sequence is 4, the smallest number not sequence
is 3. Add the edge {4, 3} to the tree, remove 4 from the beginning of the
sequence and add 3 to the end to obtain

*, 5, 6, 2, 1, 3 1

3 4

2 6

5

7. The sequence now begins with ∗, and the two smallest numbers not in the
sequence are 4 and 7. Add the edge {4, 7} to the tree to obtain

22

2.5. Spanning Trees MTH6105 (Spring 2024)

1

3 4 7

2 6

5

2.5 Spanning Trees

Let us now return to our claim that trees are useful in exploring the connected
components of a graph. A useful notion in this context is that of a spanning tree,
a subgraph that is a tree and spans all vertices.

Definition 2.23. Let G be a graph. Then a tree T is a spanning tree of G if
it is a subgraph of G and V(T) = V(G).

Indeed, the graphs possessing a spanning tree are precisely those that are
connected.

Theorem 2.24. A graph is connected if and only if it has a spanning tree.

We will not prove this result here, but will obtain it soon as a corollary of
Theorem 4.4. It implies that we can test connectivity of a graph by attempting
to grow a spanning tree within it. If a graph is not connected, we can grow a
spanning tree for each connected component and thus determine the connected
components. Once we have a spanning tree, we can also find paths and cycles.
By Theorem 2.18, if a graph contains a u−v-path, there is a unique u−v-path in
the spanning tree. By Theorem 2.17, any edge that is in the graph but not in the
spanning tree yields a cycle.

23

2.5. Spanning Trees MTH6105 (Spring 2024)

24

Chapter 3

Complexity of Algorithms and
Problems

The most important property of any algorithm is its correctness, its ability to
solve the problem it claims to solve. Once we have established correctness of an
algorithm, which in the case of Algorithm 2.19 we have done by proving that it
determines for each tree a distinct Prüfer code, we may ask for its complexity.
Here, what we mean by the complexity of an algorithm is the amount of time
required to run it or the amount of space required to carry out individual steps
and store intermediate results.

Our motivation in considering Algorithm 2.19 was a theoretical one, because
it enables us to count trees by counting codes. We can do this without ever con-
verting a particular tree into the corresponding code, and may thus not actually
care about the complexity of the algorithm. For other, more practical, applica-
tions of Algorithm 2.19, like the contruction of a random tree, the complexity
of the algorithm is important. All algorithms we will consider from now on will
be motivated mainly by practical applications, and we will be interested in their
complexity.

In this module we will focus on running time as a measure of complexity,
because it is the most important such measure and has obvious implications for
other measures like space: if we only have a certain amount of time available to
execute an algorithm, this automatically limits the amount of intermediate results
we can write down. An implication in the opposite direction turns out to hold as
well, but it is much less obvious: the amount of available space limits the overall
time of our computation, even if we can erase past steps and reuse the space.

We will measure running time in terms of the number of basic computational
steps. The exact number of such steps will of course depend on the model of
computation we use, and what the basic steps are in that model. It turns out
that the right thing to do is to use a very simple theoretical model of computation,
the Turing machine. Despite the simplicity of the Turing machine, it can be shown
that even the most advanced computer ever built can only perform the equivalent

25

3.1. Input and Running Time MTH6105 (Spring 2024)

of a limited number of steps of a Turing machine in a single step. It is conjectured
that the same is in fact true for any computer that could theoretically be built.

By measuring running time at a level of precision that ignores the differences
in performance between the Turing machine and modern computers we will then
benefit in two ways: we can measure running time relatively coarsly, and ignore
small differences arising from the use of a particular model of computation; and
the running times we obtain apply to all computers ever built rather than to a
particular theoretical model.

3.1 Input and Running Time

Just like it takes longer to determine the Prüfer code of a tree with a larger
number of vertices, the running time of most algorithms will grow with the size of
the problem instance they are attempting to solve. It thus makes sense to express
the running time of an algorithm as a function of the size of its input. As the
Turing machine works with strings of bits, we will measure input size in terms
of the number of bits required to represent the input. For problems concerning
graphs the input can be represented by a incidence or adjacency matrix, which
can be written down using a number of bits that is a linear function of the number
of vertices and edges. For problems concerning networks, or other problems that
involve numerical quantities, the size of the input also grows logarithmically in
the magnitude of the numerical quantities, because this is the number of bits
required to represent these quantities. It can be seen from this discussion that we
could cheat, and make an algorithm appear faster relative to the size of its input,
by not representing the input in the most efficient way. We will be careful not to
cheat in this way.

We will focus in this module on algorithms that terminate after a finite amount
of time for every input and that are deterministic in the sense that they will always
produce the same output for a given input.

Definition 3.1 (running time). The running time T(n) of an algorithm is
the maximum, over all problem instances of size n, of the number of basic
operations used by the algorithm in solving such an instance.

To make this definition mathematically precise we would have to define precisely
what we mean by a basic operation, and we could do so for example by using
the operations available to a Turing machine or those available to a modern com-
puter. We can, however, use the definition without making it precise. As we
have mentioned, the Turing machine to model any existing computer with only
a moderate increase in running time. Thus, if we limit ourselves to measuring
running times only up to a factor equal to that increase, we can make statements

26

3.2. Asymptotic Upper Bounds MTH6105 (Spring 2024)

about the running time that are independent of the computational model and
in particular apply to every computer built so far. In doing so, we can think
of a basic operation relatively vaguely as a simple instruction in a programming
language or a simple step carried out by hand on a piece of paper.

3.2 Asymptotic Upper Bounds

In order to formally describe the running time of an algorithm, while ignoring
small differences that arise from a particular choice of computational model, we
use the following notion of asymptotic upper bounds.

Definition 3.2 (asymptotic upper bound). Consider two functions f : N → N
and g : N → N. Then f(n) is O(g(n)), or asymptotically bounded from
above by g(n), if there exist constants c > 0 and n0 ⩾ 0 such that for all
n ⩾ n0, f(n) ⩽ c · g(n).

Intuitively f(n) is O(g(n)) if for sufficiently large n it is bounded from above
by a constant multiple of g(n). If we imagine f(n) to be the running time of
an algorithm for input size n, which may be both complicated and difficult to
determine exactly, this notation will allow us to give a different function g that
bounds the running time from above, as long as we ignore the behavior of the
algorithm for small values of n and factors that do not depend on n.

We will use Definition 3.2 to express the running time of an algorithm in
simple terms, and will therefore always use a function g that is simple and in
particular does not involve a leading constant other than one. At the same time
we will prefer functions g that grow more slowly because they implies a slower
growth of f. We should keep in mind, however, that a function g that grows more
slowly may make it more difficult to show that Definition 3.2 holds, or indeed it
may not hold at all for such a function.

Example 3.3. Let f(n) = 4n3 + 6n2 + 3n + 4. For n ⩾ 1, 1 ⩽ n ⩽ n2 ⩽ n3

and thus f(n) ⩽ 4n3 + 6n3 + 3n3 + 4n3 = 17n3. If we set g(n) = n3, n0 = 1,
and c = 17, then for all n ⩾ n0, f(n) ⩽ c · g(n), so f(n) is O(n3).

Note that Definition 3.2 only requires g to be an upper bound of f, and it
is also true for example that f is O(n4). However, O(n3) is the best bound
for f we can give, in the sense that it is simple and up to constant factors has
the same asymptotic growth as f.

Let us now consider how asymptotic notation can be used to describe the
running time of an algorithm. We begin with an algorithm from linear algebra that
we know quite well, which allows us to determine the rank of a matrix A.

27

3.2. Asymptotic Upper Bounds MTH6105 (Spring 2024)

Example 3.4. Recall that to determine the rank of a matrix A ∈ Rn×n we
can use Gaussian elimination to bring the matrix into row echelon form and
then count the number of non-zero rows in the latter.

Gaussian elimination proceeds in a number of rounds i = 1, 2, . . . , n − 1.
In the ith round, the ith row of A is multiplied by a constant, and then a
multiple of the new ith row is added to each of the rows j = i + 1, . . . , n.
Multiplication of row i by a constant requires at most n multiplications of
pairs of numbers. Addition of a multiple of row i to row j requires at most
n multiplications and n additions, and in a given round we do this at most
n − 1 times. Once Gaussian elimination is complete, we can determine the
rank of the original matrix by counting the number of non-zero rows of the
matrix we have computed. This can be done by comparing at most n2 values
to zero. If we count multiplication and addition of pairs of numbers and
comparison to zero as basic operations, then Gaussian elimination requires
at most (n−1)(n+2n(n−1))+n2 = 2n3−2n2+n = O(n3) basic operations.
This analysis is actually a bit generous because row operations become easier
in later rounds as entries below the diagonal become equal to zero, but a
more careful analysis only changes the bound by a constant factor and we
choose to ignore such constant factors.

Note that in the example we have expressed the running time of the algorithm
in terms of a natural parameter of the problem, the size n of matrix A, rather
than the size of the problem input, i.e., the number of bits required to store A.
We have done so because it is convenient, and it is acceptable as long as we are
aware of what we do and explain it precisely. If in this particular example we
wanted to measure running time relative the input size, we would for example
have to explain for example how we would approximate real numbers within a
finite number of bits. A potential benefit of such a more detailed analysis could
be that it would allow us to justify our decision that simple arithmetic operations
like addition and multiplication should count as basic operations.

Luckily, in the context of this module, we will not have to worry about the
way in which numbers are stored and simple arithmetic operations are performed.
We do have to keep in mind, however, that the running time of an algorithm may
depend on the magnitude of the numbers involved, and we will encounter an
example later where this is the case.

Let us use the algorithm that computes the Prüfer code of a tree as another
example.

Example 3.5. Consider a tree T with V(T) = [n] that is represented as a
sequence of edges. Algorithm 2.19 runs for n− 2 rounds, because it removes

28

3.2. Asymptotic Upper Bounds MTH6105 (Spring 2024)

a vertex from T in each round and stops when two vertices are left. The
first step in each round requires us to find the smallest leaf, which can be
achieved using O(n) basic operations: we first create a vector of length n

and all entries equal to 0; we then consider each of the n − 1 edges in turn
and increase the two entries of the vector corresponding to the endpoints
of the edge by one each; when this has been done the entries of the vector
correspond to the degrees of the vertices in T , and we can find the smallest
leaf by going over the vector from the beginning to determine the index of
the first entry that is equal to 1. The two remaining steps in each round, of
writing down the neighbor of the smallest leaf and deleting the leaf and its
unique incident edge, can be completed in O(n) basic operations by going
over to the sequence of edges to find the edge in question, writing down its
other endpoint, and deleting it from the sequence. The overall running time
of the algorithm is thus (n− 2)(O(n) +O(n)) = O(n2).

Note that we have again made a decision regarding basic operations, namely
that writing down a number or comparing two numbers should qualify as a basic
operation while finding the smallest leaf in a tree should not. This decision is
reasonable and not difficult to justify, but we should be aware that we have made
it.

A refined version of Algorithm 2.19 can in fact produce a Prüfer code in a
running time of only O(|V(T)|), which differs by more than just a constant factor
from the bound given above. However, even the distinction between a linear
and a quadratic running time will be beyond the scope of this module. Instead
we will consider as efficient any algorithm whose running time is bounded by a
polynomial in n.

Definition 3.6 (polynomial-time algorithm). Consider an algorithm with a run-
ning time T(n). Then the algorithm is a polynomial-time algorithm if there
exists a constant k such that T(n) is O(nk).

The distinction between polynomial running times and running times with faster
asymptotic growth, like exponential ones, may seem quite arbitrary. After all,
we would be much happier for reasonable values of n with an exponential run-
ning time of 1.00001n than with a polynomial running time of n100. The most
compelling argument is perhaps that the distinction has turned out to work very
well in practice: existence of some polynomial-time algorithm usually means that
there is a polynomial-time algorithm where the degree of the polynomial is very
small, whereas problems for which no polynomial-time algorithm is known tend
to be genuinely difficult. To illustrate that there really is a qualitative difference
between polynomial and non-polynomial running times, Table 3.1 lists example
running times for various problem sizes.

29

3.3. Complexity of Problems: P and NP MTH6105 (Spring 2024)

n n n2 n3 2n n!

10 <1s <1s <1s <1s 4s
30 <1s <1s <1s 18m 1025y
50 <1s <1s <1s 36y
102 <1s <1s 1s 1017y
103 <1s 1s 18m
104 <1s 2m 12d
105 <1s 3h 32y
106 1s 12d 31, 710y

Table 3.1: Approximate example running times relative to problem size n, under
the assumption that one million steps can be taken per second. Entries exceeding
1025 years have been left empty.

3.3 Complexity of Problems: P and NP

Now that we have a way to measure the speed of an algorithm, it makes sense
to define the difficulty of a problem, such as that of determining the connected
components of a graph, as the running time of the fastest algorithm that solves the
problem. This leads to the class P of problems that can be solved in polynomial
time.

Definition 3.7 (complexity class P). The complexity class P is the set of all
problems for which there exists a polynomial-time algorithm.

It is clear how we would show that a problem is in P: by giving an algorithm
and proving that it solves the problem and requires only polynomially many steps.
But what if for a given problem we cannot find a polynomial-time algorithm and
suspect that no such algorithm exist? Is there a way to show that a problem
cannot be solved in polynomial time? This seems difficult, because it would
require us to argue that any conceivable algorithm for solving the problem is
slow. And indeed, a way to do this has so far not been found. However, there
does exist a way for showing that a problem cannot be solved efficiently that relies
on the famous conjecture that P ̸= NP. We just defined P as the set of problems
that can be solved in polynomial time. NP, which stands for “nondeterministic
polynomial” rather than “not polynomial,” is the set of problems for which a
given solution can be verified in polynomial time. The conjecture thus claims,
intuitively, that it is more difficult to find a solution than to verify a given solution.
This seems plausible, if we for example compare the difficulty of answering an
exam question to that of understanding the model solution to a past exam. But
so far nobody has been able to prove the conjecture, and it has been selected
by the Clay Mathematics Institute as one of its Millennium Prize Problems, a

30

3.3. Complexity of Problems: P and NP MTH6105 (Spring 2024)

P

NP

NP-hard

NP-complete

Figure 3.1: Relationship between P, NP, and the set of NP-hard problems. It
is not known whether the intersection between P and the set of NP-complete
problems is empty. If it is not, then P = NP.

solution to which would be awarded a prize of $1M.
While we do not currently have a way to identify problems that are not in P,

we can identify problems that are what is called NP-hard, at least as hard as any
problem in NP. We can then define NP-complete problems as problems that are
both NP-hard and in NP. NP-complete problems are therefore the most difficult
problems in NP. If indeed P ̸= NP, then the NP-hard problems are the ones
that are not in P. NP-hardness thus provides evidence that a problem is in fact
hard, and that we should not not waste our time trying to find a polynomial-time
algorithm for it. The relationship between P, NP, and the sets of NP-hard and
NP-complete problems is illustrated in Figure 3.1.

31

3.3. Complexity of Problems: P and NP MTH6105 (Spring 2024)

32

Chapter 4

Graph Traversal

Let us now return to algorithms that work with graphs.

4.1 Breadth-First and Depth-First Search

We begin with an algorithm that takes a graph G and a vertex v ∈ V(G), and
completely explores the connected component containing v by growing a maximal
tree from v. In this context, v is also called the root of the tree.

Algorithm 4.1 (tree search). Consider a graph G and a vertex v ∈ V(G). Tree
search in G from v starts from the tree with V(T) = {v} and E(T) = ∅, and
then repeats the following steps:

1. Let u ∈ V(T) and w ∈ V(G) \ V(T) such that uw ∈ E(G). If no such
element exists, then stop.

2. Add w to V(T) and uw to E(T).

It is worth noting at this point that the edge uw in Step 1 may not be unique, so
that the algorithm may have a choice which edge to select. In cases like this, we
will be interested in and prove results about any implementation of the algorithm
that is deterministic, i.e., that makes the choices in some arbitrary but consistent
manner that only depends on the input.

Two variants of Algorithm 4.1 are particularly interesting.

Algorithm 4.2 (breadth-first search, depth-first search). In Step 1 of Algo-
rithm 4.1, let U be the sequence of vertices in V(T) in the order in which they
were added to V(T). Breadth-first search selects u be the first element in U

such that there exists w ∈ V(G) \ V(T) with uw ∈ E(G). Depth-first search
selects u be the last element in U such that there exists w ∈ V(G) \ V(T)

with uw ∈ E(G).

Breadth-first search takes its name from the fact that it adds vertices to T in

33

4.1. Breadth-First and Depth-First Search MTH6105 (Spring 2024)

2

3 4

5

1
G

1

4 52

3

Figure 4.1: A graph G and one of its spanning trees. Vertices of the spanning
tree have been arranged in layers according to their distance in G from vertex 1.
Edges that are in G but not in the spanning tree are drawn as dashed lines.

increasing order of their distance from v, where the distance of u from v is the
minimum length of a v−u-path. If we arrange the vertices of G in layers according
to their distance from v, as shown in Figure 4.1, then breadth-first search adds all
vertices in a given layer to T before any vertices in the following layer. Depth-first
search, on the other hand, explores deeper layers first.

Example 4.3. Consider the following graph:

2

3 4

5

1

If we follow the convention that w in Step 1 is selected to have the small-
est possible label, breadth-first search and depth-first search from vertex 1

respectively produce the following tree:

2

3 4

5

1

2

3 4

5

1

We consider the behavior of breadth-first search in detail and leave that of depth-
first search as an exercise. We start from a tree containing only vertex 1.

1
U = (1) V(G) \ V(T) = {2, 3, 4, 5}

Our goal is now to grow the tree by adding an edge from a vertex within the tree

34

4.1. Breadth-First and Depth-First Search MTH6105 (Spring 2024)

to a vertex outside the tree. Our only choice for the former is vertex 1, and for
the latter we choose among the neighbors of vertex 1 the vertex with the smallest
label, vertex 2. By adding vertex 2 and the edge {1, 2} to the tree we obtain

2

1
U = (1, 2) V(G) \ V(T) = {3, 4, 5}

We continue to grow the tree by adding an edge from a vertex within the tree
to a vertex outside it. Since there still exists such an edge incident to vertex 1,
we choose vertex 1 as the vertex within the tree. As the vertex outside the tree
we choose among the neighbors of vertex 1 the vertex with the smallest label,
vertex 4. By adding vertex 4 and the edge {1, 4} to the tree we obtain

2

4

1

U = (1, 2, 4) V(G) \ V(T) = {3, 5}

We grow the tree further by choosing vertex 1 from within the tree and vertex 5

outside it. By adding vertex 5 and the edge {1, 5} to the tree we obtain

2

4

5

1

U = (1, 2, 4, 5) V(G) \ V(T) = {3}

While there remain edges between a vertex inside the tree and a vertex outside it,
none of these edges is incident to vertex 1. We thus select vertex 2 as the vertex
inside the tree and add vertex 3 and the edge {2, 3} to the tree to obtain

2

3 4

5

1

U = (1, 2, 4, 5, 3) V(G) \ V(T) = ∅

The following result establishes that tree search algorithms, and breadth-first
and depth-first in particular, produce the desired outcome.

Theorem 4.4. For any graph G and any vertex v ∈ V(G), Algorithm 4.1 stops
after at most |V(G)| iterations. When the algorithms stops, T is a spanning

35

4.2. Connected Components MTH6105 (Spring 2024)

tree of the connected component of G that contains v.

Proof. In a given iteration, the algorithm either stops or adds a vertex to the tree.
It thus stops after at most |V(G)| iterations. It is easy to show by induction that
throughout the algorithm, T is always a tree. This holds trivially in the beginning
because we start from a single vertex. Assuming that it holds at the beginning
of a particular iteration by the induction hypothesis, it then also holds at the
end of each iteration because we add a new vertex and an edge between the new
vertex and a vertex previously in the tree. This edge guarantees the existence of
a path between the new vertex any vertex previously in the tree, and it cannot
form a cycle with the edges already present. When the algorithm stops, it does so
because no edge exists that has exactly one endpoint in V(T). This means that T
is a maximal graph that contains vertex v, is connected, and does not contain a
cycle, i.e., a spanning tree of the connected component of G that contains v.

Since the first step in each iteration can be performed with O(|E(G)|) basic
operations, and the second step with a constant number of basic operations, the
running time of the algorithm is O(|V(G)| · |E(G)|). With some care it is in fact
possible to reduce the running time to O(|V(G)| + |E(G)|), because there is no
need to consider any edge more than once.

Example 4.5. Assume that you want to connect computers in a network by
adding links between pairs of computers. There may be some restrictions on
the links that can be installed, but each link has the same installation cost.
If we represent computers and possible links by a graph, we want to connect
computers by a spanning tree, which by Theorem 2.16 guarantees with a
minimal number of links that any computer can communicate with any other
computer. It does not matter which spanning tree we choose, as all spanning
trees have the same number of edges and thus the same cost. We can find
a spanning tree, or establish that no spanning tree exists, by running a tree
search from an arbitrary vertex in the graph.

4.2 Connected Components

Algorithm 4.1 finds a spanning tree of the connected component of a graph G

that contains the particular vertex v the algorithm starts from. We can thus test
connectivity of a graph G by running Algorithm 4.1 from an arbitrary vertex and
testing whether the tree T produced satisfies V(T) = V(G).

By Lemma 2.7 the connected components of a graph partition its set of ver-
tices, so each vertex is contained in exactly one connected component. We can
thus determine the connected components of a graph by running Algorithm 4.1
repeatedly, first from an arbitrary vertex, and then from a vertex not contained

36

4.3. Paths and Cycles MTH6105 (Spring 2024)

in any of the connected components found so far until no such vertex exists. The
set of vertices of each connected component is equal to the set of vertices of its
spanning tree, and the connected component itself to the subgraph of G induced
by by its set of vertices.

4.3 Paths and Cycles

Consider a graph G, and let T be the tree produced by running Algorithm 4.1 on
G from a vertex v ∈ V(G). By Theorem 4.4, T is a spanning tree of the connected
component containing v. Moreover, by Theorem 2.18, T contains a unique v−u-
path for every v ∈ V(T). In the case of breadth-first search, these v−u-paths in
fact have minimum length among all v−u-paths in G.

Theorem 4.6. Let G be a graph and v ∈ V(G). Let T be a tree obtained
from breadth-first search of G starting at v, and u ∈ V(T). Then the unique
v−u-path in T has minimum length among all v−u-paths in G.

Proof. Consider the connected component of G that contains v. Arrange its
vertices into layers as in Figure 4.1, such that layer i contains all vertices u for
which the shortest v−u-path in G has length i. We can now argue by induction
over the layers.

The claim holds trivially for layer 0, which contains only vertex v. Now assume
that the statement holds for all vertices in layer k and consider a vertex u in layer
k+1. By definition of the layers, G contains an edge between u and some vertex in
layer k, and does not contain any edges between u and any vertices in layers l < k.
Note further that vertices in layer k appear in the ordered sequence U used by
breadth-first search before any vertices in layers l > k. The algorithm thus adds
to T an edge between u and a vertex w in layer k. Together with a v−w-path of
minimum length in G, which is contained in T by the induction hypothesis, this
edge forms a v−u-path of minimum length in G.

Example 4.7. Again consider the situation of Example 4.5, but now assume
that we want to make sure that each computer can communicate with a
central server, with the additional requirement that this communication hap-
pens via a minimum number of other computers. By Theorem 4.6, we can
run breadth-first search from the vertex representing the server and install
the links in the resulting spanning tree to achieve this property.

Algorithm 4.1 can also be used to find cycles. A graph contains a cycle if and
only if at least one of its connected components does. Moreover, by Theorem 2.17,
a connected components contains a cycle if and only if it is not a tree. We can
thus determine whether a graph contains a cycle by determining its connected

37

4.4. Strongly Connected Components MTH6105 (Spring 2024)

components, along with a spanning tree for each component, and test whether
any component contains any edges in addition to those contained in its spanning
tree.

4.4 Strongly Connected Components

With some slight modifications, Algorithm 4.1 can also be used to test strong
connectivity and find the connected components of a digraph.

Consider a digraph D, and observe that two vertices u, v ∈ V(D) are contained
in the same strongly connected component if and only if there exists a directed
path from u to v and a directed path from v to u. If we modify Step 1 of
Algorithm 4.1 to select u and w such that uw ∈ A(G), the algorithm constructs
a maximal tree in which all arcs are directed away from the root. If we start this
modified algorithm from some vertex v ∈ V(D) it thus yields a tree T1 such that
u ∈ V(T1) if and only if there is a directed u−v-path in D. If we modify Step 1 to
instead select u and w such that wu ∈ A(D), the algorithm constructs a maximal
tree in which all arcs are directed towards the root. Started from the same vertex
v it thus constructs a tree T2 such that u ∈ V(T2) if and only if there is a directed
v−u-path in D. The set of vertices of the strongly connected component of D

containing v then is the set V(T1)∩V(T2), and the strongly connected component
itself the subgraph of G induced by the set of vertices. To determine any other
strongly connected components of D we can repeat the procedure for a vertex not
contained in a connected component found so far, until no such vertex exists.

Example 4.8. If we apply the procedure to the digraph D in Figure 2.2
starting from vertex 1, using breadth-first search, and giving precedence to
vertices with smaller labels, we obtain the following two trees:

2

3 4

5

1
T1

2 5

1
T2

The connected component D1 containing vertex 1 is thus given by V(D1) =

V(T1)∩V(T2) = {1, 2, 5} and A(D1) = {(1, 2), (2, 5), (5, 1)}. We can now apply
the procedure starting from vertex 3 /∈ V(D1) to obtain the connected com-
ponent D2 with V(D2) = {3} and A(D2) = ∅, and then starting from vertex 4

to obtain the connected component D3 with V(D3) = {4} and A(D3) = ∅.

38

4.5. Directed Cycles MTH6105 (Spring 2024)

1 2

34

5

1 2

34

5

Figure 4.2: A directed acyclic graph and a directed graph that contains a directed
cycle

4.5 Directed Cycles

We finally consider directed cycles in directed graphs.

Definition 4.9 (directed acyclic graph). A digraph D is a directed acyclic
graph if it does not contain any directed cycles.

The digraph on the left of Figure 4.2 is a directed acyclic graph. The digraph
on the right of Figure 4.2 contains the cycle 2, 5, 3, 2.

A useful concept to understand directed cycles in digraphs is a so-called topo-
logical ordering.

Definition 4.10 (topological ordering). Let D be a digraph. A topological
ordering of D is a strict total order ≺ on V(D) such that u ≺ v for every arc
uv ∈ A(D).

In other words, a topological ordering of a digraph is an ordering of its vertices
from left to right such that all arcs also go from left to right. We will see that
directed acyclic graphs are characterized by the existence of a topological ordering.
One direction of this result is obvious: if there is a topological ordering and
we draw the vertices of the graph from left to right according to this ordering,
then all arcs go from left to right and there cannot be any cycles. We show the
other direction by giving an algorithm that takes a digraph D and determines a
topological ordering of D whenever such a topological ordering exists.

Algorithm 4.11 (topological ordering). Let D be a digraph. Start with the
empty sequence, then repeat the following steps until no vertices remain
in D:

1. Let v ∈ V(D) such that d−
D(v) = 0. If no such vertex exists, then stop.

There is no topological ordering of the original digraph.
2. Write down v as the next element in the sequence.
3. Remove v from D, along with all arcs incident to v.

39

4.5. Directed Cycles MTH6105 (Spring 2024)

For a given digraph D, the algorithm either stops at some point in Step 1 or
produces a sequence that contains each element of V(D) exactly once. In the latter
case the sequence produced actually describes a topological ordering of D: when
v ∈ V(D) is written down, there are no arcs in the remaining digraph whose head
is v, and the remaining digraph in particular contains all arcs from the original
digraph whose tail comes after v in the sequence.

Example 4.12. When the algorithm is applied to the digraph on the left
of Figure 4.2, which is acyclic, it produces the sequence 1, 2, 5, 4, 3. It is
easy to verify that this sequence describes a topological ordering. When the
algorithm is applied to the digraph on the right of Figure 4.2, which contains
a cycle, it writes down 1 and stops, concluding that the digraph does not
have a topological ordering.

The algorithm produces a topological ordering for D if and only if D is acyclic.
This is a consequence of the following lemma, and the fact that a digraph is acyclic
if and only if all of its subdigraphs are acyclic.

Lemma 4.13. Let D be a directed acyclic graph. Then there exists v ∈ V(D)

such that d−
D(v) = 0.

Proof. Consider a directed path P of of maximum length in D, and let v be the
first vertex on this path. Then no arcs exist from any vertex in V(D) \V(P) to v,
because this would contradict the fact that P has maximum length. There are
also no arcs from any vertex in V(P) to v, because this would imply the existence
of a directed cycle. Thus d−

D(v) = 0.
We have established the following result.

Theorem 4.14. Let D be a digraph. Then D is acyclic if and only if it has a
topological ordering.

Algorithm 4.11 can thus be used to test whether a given digraph is acyclic,
and produces a topological ordering if it is. The running time of the algorithm is
O(|V(D)|3): it removes an element of V(D) in each iteration in which it does not
stop; a vertex with indegree zero can be found, and then deleted along with any
incident edges, using a constant number of basic operations like comparison or
copying for each of the at most |V(D)|2 entries of the adjacency matrix.

Example 4.15. Assume we are given a set of projects, along with dependen-
cies among projects that require some projects to be completed before others
can be started. This situation can be represented by a digraph in which each

40

4.5. Directed Cycles MTH6105 (Spring 2024)

vertex corresponds to a project and there is an arc uv if project u has to
be completed before project v can begin. Clearly the projects can only be
completed if the digraph is acyclic, because any cycle would mean that none
of the projects in the cycle can ever be started. In the case where the graph
is acyclic, Algorithm 4.11 produces an ordering of the projects in which they
can be executed.

41

4.5. Directed Cycles MTH6105 (Spring 2024)

42

Chapter 5

Minimum Spanning Trees and
Shortest Paths in Networks

We have already looked at spanning trees and paths that were optimal in the
sense that they contained a minimum number of edges. We will now consider
optimal spanning trees and paths in networks, where we will seek to minimize the
sum of the weights of the edges or arcs in the spanning tree or path.

Definition 5.1 (minimum spanning tree, shortest path). Consider a network
(G,w), and let the weight or length of a subgraph H of G be the sum∑

e∈E(H) w(e) of the weights of its edges. A spanning tree T of G is a mini-
mum spanning tree of G if it has minimum weight among all spanning trees
of G. A u−v-path of G is a shortest u−v-path in G if it has minimum length
among all u−v-paths in G.

It will be convenient to discuss these problems only for simple graphs. This
is without loss of generality, as spanning trees and paths may not contain any
loops and will never contain any multiple edges. Each of the algorithms we will
describe for simple graphs can thus be applied to general graphs by first removing
all loops and removing all multiple edges with a given pair of endpoints except
one with minimum weight. This preliminary step has running time O(|E(G)|).

Figure 5.1 shows a network along with a minimum spanning tree and a span-
ning tree of shortest paths.

5.1 Minimum Spanning Trees

We will consider three different algorithms for finding a minimum spanning tree.
All three algorithms follow what could be called a greedy strategy: they build a
solution in small steps and in each step take a decision that myopically optimizes
a certain criterion without looking into the future. We will begin by describing
the algorithms and convincing ourselves that they all produce a spanning tree

43

5.1. Minimum Spanning Trees MTH6105 (Spring 2024)

v1 v2

v3

v4 v5

3

5

1

5

2 2

4 5

v1 v2

v3

v4 v5

2 2

1

4

v1 v2

v3

v4 v5

3

2

5

1

Figure 5.1: A network, a minimum spanning tree of the network, and a spanning
tree of the network containing for each i ∈ [5] a shortest 1−vi-path

and do so efficiently. Then we will argue, using two results concerning minimum
spanning trees and the edges contained within them, that the algorithms actually
produce a minimum spanning tree.

The first algorithm, named after Robert Prim but actually proposed earlier
by Vojtěch Jarník, starts from an arbitrary vertex and grows a tree by repeatedly
adding an edge of minimum weight between a vertex within the tree and a vertex
outside it.

Algorithm 5.2 (Prim). Consider a network (G,w) and s ∈ V(G). Prim’s
algorithm starts from the tree T with V(T) = {s} and E(T) = ∅, and then
repeats the following:

1. Let F = {uv ∈ E(G) : u ∈ V(T), v ∈ V(G) \ V(T)}. If F = ∅, stop.
2. Let uv ∈ F such that w(u, v) = minxy∈Fw(x, y).
3. Add v to V(T) and uv to E(T).

It is easy to see that the algorithm produces a spanning tree of the connected
component containing the initial vertex s. Indeed, an edge is added in each
iteration where the algorithm doesn’t stop, an edge considered for inclusion never
forms a cycle with the edges already present, and some edge is considered for
inclusion until a spanning tree of the connected component has been found. The
algorithm in fact stops after at most |V(G)|− 1 iterations, equal to the number of
edges in a spanning tree, and edge uv in Step 2 can be found in time O(|E(G)|).
The algorithm thus has running time O(|V(G)| · |E(G)|), and this can be reduced
to O(|V(G)|2) by storing for each vertex outside the current tree the minimum
weight of an edge connecting it to the tree. Using more sophisticated ideas it is
possible to achieve a running time of O(|E(G)|+ |V(G)| log |V(G)|), which is better
in graphs that have relatively few edges.

Example 5.3. When Prim’s algorithm is applied to the network on the left
of Figure 5.1 starting from v1, it successively adds the edges v1v3, v2v3, v3v4,
and v4v5 along with their vertices. It thus obtains the spanning tree at the

44

5.1. Minimum Spanning Trees MTH6105 (Spring 2024)

center of Figure 5.1.

The second algorithm, discovered by Joseph Kruskal, also starts from a graph
without any edges, and repeatedly adds edges with the smallest possible weight
while ensuring that the graph remains acyclic.

Algorithm 5.4 (Kruskal). Consider a network (G,w). Let F be a sequence that
contains the elements of E(G) in non-decreasing order of weight. Kruskal’s
algorithm starts from the graph T with V(T) = V(G) and E(T) = ∅, and then
repeats the following until F is empty:

1. Let uv be the first element of F. Remove uv from F.
2. Unless this would creates a cycle, add uv to E(T).

It is again easy to see that the algorithm finds a spanning tree after a finite
number of iterations, because it considers each edge exactly once and never creates
a cycle. An important factor in the overall running time of the algorithm is the
time it takes to sort the set of edges by weight. It is easy to see that this part of
the algorithm can be completed in O(|E(G)|2) steps, and in fact it can be done
in O(|E(G)| log |E(G)|) steps. The algorithm then runs for |E(G)| iterations, and
the difficult question in each iteration is whether the addition of an edge would
create a cycle. We have seen how this can be done using tree search in time
O(|V(G)| · |E(G)|), and it can in fact be done in time O(|V(G)|) by remembering in
a sophisticated way the connected component each vertex is part of. An edge then
creates a cycle if it connects two vertices that are already in the same connected
component.

Example 5.5. Again consider the network on the left of Figure 5.1 and ob-
serve that the following ordering of its edges is non-decreasing in weight:

v4v5, v1v3, v2v3, v1v2, v3v4, v1v4, v2v5, v3v5

Kruskal’s algorithm thus begins by adding edges v4v5, v1v3, and v2v3. The
edge v1v2 is considered next, but this edge forms a cycle with the edges v1v3
and v2v3 already present and is therefore not added. The algorithm then adds
the edge v3v4 to again obtain the spanning tree at the center of Figure 5.1.
As any additional edge would create a cycle, no further edges are added.

The third algorithm, which can be seen as an inverse version of Kruskal’s,
starts with all edges that are in the original graph and repeatedly deletes vertices
with maximum weight while ensuring that the graph stays connected.

Algorithm 5.6 (reverse-delete). Consider a network (G,w). Let F be a se-

45

5.1. Minimum Spanning Trees MTH6105 (Spring 2024)

quence that contains the elements of E(G) in non-decreasing order of weight.
The reverse-delete algorithm starts from the graph T with V(T) = V(G)

and E(T) = E(G), and then repeats the following until F is empty:
1. Let uv be the last element of F. Remove uv from F.
2. Unless this would yield a graph that is not connected, remove uv from

E(T).

It is yet again easy to see that the algorithm finds a spanning tree after a
finite number of iterations. Like Kruskal’s algorithm the algorithm starts by
sorting the set of edges and then runs for |E(G)| iterations. The difficult question
in each iteration, whether the removal of an edge would result in a graph that is
not connected, can be be answered using tree search in time O(|V(G)| · |E(G)|).

Example 5.7. Consider the network on the left of Figure 5.1 one more time.
The reverse-delete algorithm uses the same ordering of the edges as Kruskal’s,
but instead of adding edges to an empty network starting at the front of the
ordering removes edges from the original network starting at the back. It
thus removes edges v3v5, v2v5, and v1v4. The edge v3v4 is considered next,
but is the only remaining path between vertices v3 and v4 and therefore not
removed. The algorithm then removes the edge v1v2 and yet again obtains
the spanning tree at the center of Figure 5.1. No further edges are removed,
as any such removal would yield a graph that is not connected.

To show that Prim’s and Kruskal’s algorithms work correctly, we will use a
more general result characterizing the edges contained in some or all minimum
spanning trees.

Theorem 5.8. Consider a connected network (G,w). Let S ⊆ V(G), F =

{uv ∈ E(G) : u ∈ S, v ∈ V(G) \ S}, and uv ∈ F. If w(u, v) = minst∈Fw(s, t),
then there is a minimum spanning tree of (G,w) containing uv. If w(u, v) <

minst∈F\{uv} w(s, t), then every minimum spanning tree of (G,w) contains
uv.

Proof. Let T be an arbitrary minimum spanning tree of (G,w). If uv ∈ E(T),
there is nothing to show. If uv /∈ E(T) then, by Theorem 2.17, E(T) ∪ {uv}

contains a cycle, and this cycle must contain another edge xy ∈ F. Let T ′ be
the graph with V(T ′) = V(T) and E(T ′) = (E(T) \ {xy}) ∪ {uv}. Observe that
T ′ is connected and acyclic, and thus is a spanning tree of G. Now consider the
weight of uv. If w(u, v) = minst∈F\{uv} w(s, t), then T ′ has the same weight as
T and is a minimum spanning tree. There thus exists a minimum spanning tree
that contains uv. If w(u, v) < minst∈F\{uv} w(s, t), then T ′ has a smaller weight
than T , which contradicts the assumption that T is a minimum spanning tree.

46

5.1. Minimum Spanning Trees MTH6105 (Spring 2024)

Thus uv ∈ E(T) and, since T is an arbitrary minimum spanning tree, uv must be
contained in every minimum spanning tree.

Theorem 5.9. When applied to a connected network, Prim’s algorithm pro-
duces a minimum spanning tree.

Proof. Any edge e added by the algorithm has minimum weight in F = {uv ∈
E(G) : u ∈ V(T), v ∈ V(G) \ V(T)}, which is equal to the set F in Theorem 5.8 if
we choose S = V(T).

If e is the unique edge with minimum weight in F, then by Theorem 5.8 it is
contained in every minimum spanning tree and can safely be added. To see that
it is safe to add e also if it is not the unique edge with minimum weight, imagine
that we modify the network by adding some small value ϵ > 0 to the weight
of every edge of minimum weight in F \ {e}. As we only increase the weight of
edges the algorithm has not yet selected, the algorithm would have made the same
choices for the original and the modified network up to the point when it considers
e. Since e is now the unique edge with minimum weight in F, we can add it to
the spanning tree and proceed with the algorithm to obtain a minimum spanning
tree of the modified network. However, if ϵ is chosen to be small enough, then
any spanning tree that was not a minimum spanning tree of the original network
will also not be a minimum spanning tree of the modified network. The spanning
tree found by the algorithm for the modified network will thus be a minimum
spanning tree of the original network.

Correctness of Kruskal’s algorithm can be shown in analogous way to that of
Prim’s algorithm, and we leave this as an exercise.

Theorem 5.10. When applied to a connected network, Kruskal’s algorithm
produces a minimum spanning tree.

To prove that the reverse-delete algorithm works correctly, we use a result char-
acterizing the edges not contained in all or any minimum spanning trees.

Theorem 5.11. Consider a connected network (G,w). Let F ⊆ E(G) be
the set of edges contained in a cycle of G, and let uv ∈ F. If w(u, v) =

maxst∈Fw(s, t), then there is a minimum spanning tree of (G,w) that does
not contain uv. If w(u, v) > maxst∈F\{uv} w(s, t), then no minimum spanning
tree of (G,w) contains uv.

Proof. Let T be an arbitrary minimum spanning tree of (G,w). If uv /∈ E(T),
there is nothing to show. If uv ∈ E(T), then there exists another edge xy ∈ F such
that xy /∈ E(T). Let T ′ be the graph with V(T ′) = V(T) and E(T ′) = (E(T)\{uv})∪
{xy}. Observe that T ′ is connected and acyclic, and thus is a spanning tree of G.

47

5.2. Shortest Paths for Non-Negative Weights MTH6105 (Spring 2024)

Now consider the weight of uv. If w(u, v) = maxst∈F\{uv} w(s, t), then T ′ has the
same weight as T and is a minimum spanning tree. There thus exists a minimum
spanning tree that does not contain uv. If w(u, v) > maxst∈F\{uv} w(s, t), then
T ′ has a smaller weight than T , which contradicts the assumption that T is a
minimum spanning tree. Thus uv /∈ E(T) and, since T is an arbitrary minimum
spanning tree, uv must not not be contained in any minimum spanning tree.

Correctness of the reverse-delete algorithm can be shown in an analogous way
to that of Prim’s algorithm, by using Theorem 5.11 to argue that it is safe to
remove each edge removed by the algorithm. We leave the proof as an exer-
cise.

Theorem 5.12. When applied to a connected network, the reverse-delete
algorithm produces a minimum spanning tree.

Theorems 5.8 and 5.11 could also be used more generally to reason about
minimum spanning trees of a given network. We can show, for example, that the
spanning tree at the center of Figure 5.1 is the unique minimum spanning tree of
the network on the left by arguing that every edge contained in this spanning tree
must be contained in every minimum spanning tree, or that none of the edges
not contained in it are contained in any minimum spanning tree. However, this
seems difficult to do because Theorems 5.8 and 5.11 do not tell us how to find a
partition of the set of vertices or a cycle for which their conditions are satisfied.

The following result provides a necessary and sufficient condition for unique-
ness that is easier to check. We leave the proof of this result as an exercise.

Theorem 5.13. Let (G,w) be a network, T a minimum spanning tree of
(G,w). Then (G,w) has a unique minimum spanning tree if and only if the
following condition is satisfied: for every edge e ∈ E(G)\E(T) with endpoints
u, v ∈ V(G) and every edge d ∈ E(T) contained in the unique u−v-path in T ,
w(e) > w(d).

5.2 Shortest Paths for Non-Negative Weights

Let us now turn to shortest paths. In the case where all weights are non-negative,
shortest paths starting at a given vertex can be found by growing a spanning tree
in a similar way as Prim’s algorithm, but using a different greedy choice for the
next edge to include. The algorithm was first proposed by Edsger Dijkstra.

Algorithm 5.14 (Dijkstra). Consider a network (G,w) and s ∈ V(G). Dijk-
stra’s algorithm starts from the tree T with V(T) = {s} and E(T) = ∅, and

48

5.2. Shortest Paths for Non-Negative Weights MTH6105 (Spring 2024)

then repeats the following:
1. Let F = {uv ∈ E(G) : u ∈ V(T), v ∈ V(G) \ V(T)}. If F = ∅, stop.
2. For each u ∈ V(T), let δ(u) be the length of the unique s−u-path in T .
3. Let uv ∈ F such that δ(u) +w(u, v) = minxy∈F(δ(x) +w(x, y)).
4. Add v to V(T) and uv to E(T).

We will see that Dijkstra’s algorithm indeed grows a tree containing shortest
paths from s to the other vertices. The value δ(u) defined in Step 2 is thus
the distance of u from s, i.e., the length of a shortest s−u path in (G,w). The
algorithm then in each step greedily connects to the current tree a vertex v outside
the tree that is closest to s, where the distance from s to v is measured as the
length of any shortest path inside the tree plus that of the single edge extending
that path to v. As in the case of Prim’s algorithm, it is easy to see that the
running time of Dijkstra’s algorithm is O(|V(G)| · |E(G)|). Indeed, the algorithm
runs for at most |V(G)| − 1 iterations, and an edge uv in Step 3 can be found in
time O(|E(G)|) assuming that we have stored δ(u) for all u ∈ V(T). By storing for
every vertex v ∈ V(G) the length of a shortest s−v-path that apart from v only
includes vertices in the current tree T , the running time of Step 3 can be reduced
to O(|V(G)|) and that of the algorithm to O(|V(G)|2). A further improvement to
O(|E(G)|+ |V(G)| log |V(G)|) can be achieved using more sophisticated ideas.

Example 5.15. Consider the network in the left of Figure 5.1 and assume
that Dijkstra’s algorithm is applied to this network starting from v1. At the
beginning of the algorithm, V(T) = {v1} and δ(v1) = 0, and the edges con-
sidered for inclusion are v1v2, v1v3, and v1v4. Of these v1v3 is selected, as
δ(v1)+w(v1, v3) = min{δ(v1)+w(v1, v2), δ(v1)+w(v1, v3), δ(v1)+w(v1, v4)}.
Now V(T) = {v1, v3}, δ(v1) = 0, and δ(v3) = 2, and the edges considered
for inclusion are v1v2, v1v4, v3v2, v3v4, and v3v5. Of these v1v2 is se-
lected, as δ(v1)+w(v1, v2) = min{δ(v1)+w(v1, v2), δ(v1)+w(v1, v4), δ(v3)+

w(v3, v2), δ(v3) +w(v3, v4), δ(v3) +w(v3, v5)}. The algorithm then proceeds
to include edges v1v4 and v4v5 and obtains the spanning tree on the right of
Figure 5.1.

Theorem 5.16. When applied to a network (G,w) with non-negative weights
starting from s ∈ V(G), Dijkstra’s algorithm produces a tree containing short-
est paths from s to all vertices in the same connected component as s.

Proof. We show by induction on |V(T)| that throughout the algorithm, T contains
a shortest s−t-path for every t ∈ V(T). Initially V(T) = {s}, and the claim trivially
holds. Now assume that the algorithm has constructed a tree T containing a
shortest s−t-path for every t ∈ V(T), and selects the vertex v and the edge uv for

49

5.3. Shortest Directed Paths MTH6105 (Spring 2024)

addition to the tree. Let P be the s−v-path that follows the s−u-path contained
in T and then traverses the edge uv. For any path Q, let l(Q) denote the length
of Q. It suffices to show that P is a shortest s−v-path. Assume for contradiction
that this is not the case, i.e., that there exists an s−v-path Q that is shorter
than P. Since v /∈ V(T), Q must contain an edge in F. Let xy be the first
edge of Q contained in F, and let R be the s−x-path obtained by following Q to
x. Since weights are non-negative, l(Q) ⩾ l(R) + w(x, y). Since the algorithm
chooses uv ∈ F over xy ∈ F, δ(x) +w(x, y) ⩾ δ(u) +w(u, v). Since u, x ∈ V(T),
and by the induction hypothesis, l(R) ⩾ δ(x) and l(P) = δ(u) + w(u, v). Thus
l(Q) ⩾ l(P), contradicting the assumption that Q is shorter than P.

When some of the weights in the network are negative, Dijkstra’s algorithm
may fail.

Example 5.17. Consider the following network:

v1 v2

v3

1

2 −2

When Dijkstra’s algorithm is applied to this network starting from vertex v1,
it considers the edges v1v2 and v1v3 for inclusion and includes v1v2. This is
incorrect, as the shortest v1−v2-path is not v1, v2 but v1, v3, v2.

Shortest paths can be found efficiently even in the presence of negative weights
as long as there are no negative cycles, but this is beyond the scope of this module.
In the presence of negative cycles, finding shortest paths is NP-hard.

5.3 Shortest Directed Paths

In a directed network with non-negative weights, a version of Dijkstra’s algorithm
that in Step 1 considers arcs from u to v instead of edges between u and v can
be used to find a shortest directed path from s to any vertex to which such a
path exists. A variant of Example 5.17 with arcs v1v2, v1v3, and v2v3 shows
that the algorithm may again fail in the presence of negative weights. The reason
for this failure is that Dijkstra’s algorithm greedily commits to a path while
ignoring that there might be a path with a greater number of arcs but shorter
overall length. An alternative algorithm, due to Bellman and Ford, overcomes
this problem by considering paths in increasing order of their number of arcs and
looking specifically for shorter paths that have a greater number of arcs.

Consider a directed network (D,w) and s ∈ V(D). Let n = |V(D)|. For
v ∈ V(D) and k = 0, 1, . . . , n − 1, let δk(v) be the length of a shortest directed

50

5.3. Shortest Directed Paths MTH6105 (Spring 2024)

s−v-path that uses at most k arcs. In the absence of negative cycles, the length
of a shortest s−v-path is equal to δn−1(v). The idea behind Bellman and Ford’s
algorithm is to express δk(v) recursively in terms of the values δk−1(u) for u ∈
V(D) and to then computing the values inductively for k = 0, . . . , n− 1. Clearly,
an s−v-path with k = 0 arcs exists if an only if v = s. Defining the length of
non-existent paths to be ∞, we thus have

δ0(v) =

{
0 if v = s,∞ otherwise.

(5.1)

When k ⩾ 1, a shortest s−v-path using k arcs can have one of two forms: either it
uses only k−1 arcs, or it uses k−1 arcs to get from s to some vertex u ∈ V(D)\{v}

and finally traverses the arc uv. Thus, for k ⩾ 1,

δk(v) = min{δk−1(v),minu∈V(D)\{v} δk−1(u) +w(u, v)}. (5.2)

Algorithm 5.18 below computes the lengths of shortest s−v-paths for all v ∈
V(D) by initializing them according to (5.1) and then repeatedly updating them
according to (5.2), subject to two additions.

First, the algorithm performs an additional nth round of updates to compute
δn(v) for all v ∈ V(D), and any further reduction in this final iteration indicates
the existence of a directed cycle of negative length that invalidates the result of the
algorithm. Second, the algorithm stores for each vertex v ∈ V(D) a predecessor
p(v) ∈ V(D) that appears immediately before v on a shortest s−v-path of length
δk(v). This predecessor is updated whenever a shorter path is found, i.e., when the
outer minimum in (5.2) is not attained by the first value. Denote by U ⊆ V(D) the
set of vertices v such that D contains a directed s−v-path. When the algorithm
terminates, every vertex v ∈ U will have a predecessor p(v), and p(v)v ∈ A(D).
If the algorithm fails due to the existence of a directed cycle of negative length,
the set of arcs {p(v)v | v ∈ U} will contain a negative cycle. Otherwise these arcs
will form a spanning tree of the induced subdigraph D[U] of D and will all be
directed away from v. This is the equivalent for directed networks of the spanning
tree of shortest paths of the connected component containing s that is found by
Dijkstra’s algorithm.

Algorithm 5.18 (Bellman-Ford). Consider a directed network (D,w) and s ∈
V(D). Let n = |V(D)|. The Bellman-Ford algorithm proceeds as follows:

1. For each v ∈ V(D), set δ0(v) = 0 if v = s and δ0(v) = ∞ otherwise.
2. Repeat the following for k = 1, 2, . . . , n− 1:

For each v ∈ V(D) do the following:
(a) Let δk(v) = min{δk−1(v),minu∈V(D)\{v} δk−1(u) +w(u, v)}.
(b) If δk(v) < δk−1(v), let p(v) = arg minu∈V(D)\{v} δk−1(u) +w(u, v).

3. Repeat the previous step for k = n. If for any v ∈ V(D), δn(v) <

51

5.3. Shortest Directed Paths MTH6105 (Spring 2024)

v1

v3

v2

v4

v5

3

3

−2

−1

1

14

4

v1

v3

v2

v4

v5

−2

−1

14

Figure 5.2: A directed network (D,w) and a spanning tree of this network con-
taining a shortest v1−v-path of (D,w) for every vertex v ∈ V(D)

δn−1(v), then stop. (D,w) contains a directed cycle of negative length
and the algorithm cannot be used to find shortest paths in (D,w).

Example 5.19. Consider the directed network on the left of Figure 5.2, and
assume that the Bellman-Ford algorithm is applied to the network starting
from v1.

When computing δk(v) for k = 1, 2, . . . , n and v ∈ V(G) it is convenient
to write down these values in a table with rows indexed by values of k and
columns indexed by values of v. As in addition to determining the length δ(v)

of a shortest v1−v-path we want to find the path itself, we also record the
predecessor p(v) of v along a shortest path that uses at most k vertices along-
side the value δk(v). For the network in Figure 5.2 we obtain the following
table.

v1 v2 v3 v4 v5

0 0 ∞ ∞ ∞ ∞
1 0 4(v1) 3(v1) 3(v1) ∞
2 0 4(v1) 2(v2) 2(v3) 4(v3)

3 0 4(v1) 2(v2) 1(v3) 3(v3)

4 0 4(v1) 2(v2) 1(v3) 2(v4)

5 0 4(v1) 2(v2) 1(v3) 2(v4)

The entry for k = 1 and v = v2 has for example been obtained from entries in
the row for k = 0 as δ1(v2) = min{δ0(v2),minu∈V(D)\{v2} δ0(u) +w(u, v2)} =

min{∞, δ0(v1) + w(v1, v2)} = min{∞, 0 + 4} = 4, where the second equality
holds because v1 is the only vertex that is the tail of an arc with head v2.
The vertex v1 from which v2 has been reached has been recorded in the table
next to δ1(v2).

Since the entries in the row for k = 5 are unchanged compared to those
in the row for k = 4, the algorithm has not encountered a cycle of negative

52

5.4. Directed Cycles MTH6105 (Spring 2024)

length and the values it has computed are therefore correct. The arcs v1v2,
v2v3, v3v4, and v4v5 between each vertex and its predecessor on a shortest
path form a spanning tree of the network (D,w), and this spanning tree
contains a shortest v1−v-path for every v ∈ V(D). The spanning tree, which
in this particular example happens to be a path, is shown on the right of
Figure 5.2.

We have already argued that the algorithm is correct. To see that it is efficient,
observe that the algorithm performs |V(G)| iterations. In each iteration |V(G)|

values are updated, and each such update considers a minimum over |V(G)| values.
All other operations can be performed in constant time. The running time of the
algorithm is thus O(|V(G)|3). As it is unnecessary to consider a particular arc
more than once in each iteration, it is possible to reduce the running time to
O(|V(G)| · |A(G)|).

It is natural to ask whether an efficient algorithm exists that can find shortest
paths even in the presence of negative cycles. This is unlikely, as the problem of
finding shortest paths in this case is NP-hard.

5.4 Directed Cycles

If a directed network (D,w) contains a directed cycle of negative length, and a
directed path from s ∈ V(D) to a vertex in that cycle, the Bellman-Ford algorithm
cannot be used to find shortest directed paths in (D,w) that start at s. The
algorithm will, however, detect the presence of such a cycle. We can thus use the
algorithm to detect a negative cycle in an arbitrary directed network (D,w), by
first adding to the digraph a new vertex u /∈ V(D) and arcs {uv : v ∈ V(D)} with
weight zero and then running the Bellman-Ford algorithm starting from u.

Example 5.20. Imagine that we are given a table of exchange rates among
currencies and want to decide whether there exists an arbitrage opportunity,
i.e., an opportunity to make a profit by a cyclic exchange of currencies. We
can represent this situation by a digraph on the set of currencies where the
arc from currency u to currency v has a weight equal to the negative of the
logarithm of the exchange rate from u to v. The reason we want to the use
the negative of the logarithm as the weight is that an arbitrage opportunity
corresponds to a directed cycle in the graph such that the product of the
exchange rates along the cycle is greater than one, which is the case exactly
if the negative of the sum of the logarithms of the exchange rates is negative.

53

5.5. Longest Paths in Directed Acyclic Networks MTH6105 (Spring 2024)

5.5 Longest Paths in Directed Acyclic Networks

The Bellman-Ford algorithm can finally be used to find a longest directed path
in a directed acyclic network. To this end we again add a new vertex and arcs
of weight zero from the new vertex to any existing vertex, and then multiply all
weights by −1. Since the network does not contain any directed cycles, starting
the Bellman-Ford algorithm from the new vertex will produce a shortest path to
any other vertex to which a path exists, and the shortest such path corresponds to
a longest path in the original network. Just like the problem of finding a shortest
path in the presence of a negative cycle, the problem of finding a longest directed
path in a general directed network is NP-hard.

Longest directed paths in a directed acyclic network can in fact be found more
easily by a greedy algorithm that like Dijkstra’s algorithm grows a spanning tree
T starting from an initial vertex s ∈ V(D), and uses the same notion of distance
between s and vertices v ∈ V(D)\V(T) as Dijkstra’s algorithm. Unlike Dijkstra’s
algorithm, the new algorithm selects an arc for addition to T to maximize rather
than minimize distance, and adds vertices to V(T) in the order of a topological
ordering. When v ∈ V(D) \ V(T) is added to V(T), the latter property ensures
that there cannot be any longer paths that visit vertices in (V(D) \ V(T)) \ {v}

before visiting v, as no arcs exist in D from such vertices to v.

Algorithm 5.21 (Morávek). Consider a directed acyclic network (D,w), and
s ∈ V(D) such that there exists a directed s−u-path in D for every u ∈ V(D).
Let ≺ be a topological ordering of D. Morávek’s algorithm starts from the
tree T with V(T) = {s} and A(T) = ∅ and then repeats the following:

1. Let v ∈ V(D)\V(T) such that v ≺ u for all u ∈ V(D)\V(T). If no such
element exists, then stop.

2. Let F = {uv ∈ A(D) : u ∈ V(T)}.
3. For each u ∈ V(T), let δ(u) be the length of the unique s−u-path in T .
4. Let uv ∈ F such that δ(u) +w(u, v) = maxxy∈F δ(x) +w(x, y).
5. Add v to V(T) and uv to A(T).

We have already argued informally why the algorithm is correct and leave
a formal proof of correctness as an exercise. The running time of the algo-
rithm, including the construction of a topological orderging, is easily seen to
be O(|V(D)| · |A(D)|), and this can be improved to O(|A(D)|) by using that both
the construction of a topological ordering and the rest of the algorithm can be
completed by considering each arc only a constant number of times. It further is
straighforward to adapt the algorithm to find shortest rather than longest directed
paths in directed acyclic networks with the same running time.

54

5.5. Longest Paths in Directed Acyclic Networks MTH6105 (Spring 2024)

v1 v2

v5v4

v3

5

1

3
4

1

4

1

2

v1 v2

v5v4

v3

5

4

1

2

Figure 5.3: A directed acyclic network (D,w) and a spanning tree of this network
containing a longest v1−u-path for every u ∈ V(D)

Example 5.22. Consider the directed acyclic network (D,w) on the left of
Figure 5.3. The unique topological ordering ≺ of D is the one with v1 ≺
v2 ≺ v3 ≺ v4 ≺ v5, and D contains a v1−u-path for every u ∈ V(D). When
Moravek’s algorithm is applied to (D,w) starting from v1, it constructs the
spanning tree on the right of Figure 5.3.

Example 5.23. Consider a directed acyclic network in which vertices and
arcs represent milestones and activities in a project, and the weight of an
arc corresponds to the duration of the activity represented by the arc. We
may assume that there exists an initial milestone s and a final milestone t

representing the start and end of the project, such that there exists a directed
s−v-path and a directed v−t path for every vertex v in the network. A
topological ordering of the network then represents a sequence in which the
activities can be executed. A longest path, also called critical path in this
context, represents a sequence of activities of maximum duration that have
be to be executed sequentially and thus determine the overall duration of the
project.

55

5.5. Longest Paths in Directed Acyclic Networks MTH6105 (Spring 2024)

56

Chapter 6

Network Flows

Consider a directed network (D, c), and imagine that certain quantities of a di-
visible resource such as water flow along the arcs of this network. The weight
c(e) of arc e, which we will assume to be non-negative, will now correspond to
the capacity of that arc, i.e., the maximum amount of the resource that can flow
along it. Given these capacities, and given two vertices s, t ∈ V(D), we will ask
how much of the resource we can send from s to t. We will assume in the following
that the network (D, c) is simple, i.e., that it does not have any loops or multiple
arcs. This is without loss of generality, as loops do not increase the amount of
the resource we can send and multiple arcs can be replaced by a single arc with
capacity equal to the sum of their capacities.

6.1 Maximum Flows

We need some notation. For v ∈ V(D), let A−
D(v) ⊆ A(D) be the set of arcs in

D with head v and A+
D(v) ⊆ A(D) the set of arcs with tail v. For S ⊆ V(D), let

A−
D(S) = ∪v∈SA

−
D(v) be the set of arcs whose head is in S and A+

D(S) = ∪v∈SA
+
D(v)

the set of arcs whose tail is in S.

Definition 6.1 (flow, size, maximum flow). Let (D, c) be a directed network,
s, t ∈ V(D). A function f : A(D) → R is an s−t-flow of (D, c) if

• 0 ⩽ f(e) ⩽ c(e) for all e ∈ A(D), and
•
∑

e∈A−
D(v) f(e) =

∑
e∈A+

D(v) f(e) for all v ∈ V(D) \ {s, t}.
The size of the s−t-flow f is equal to |f| =

∑
e∈A+

D(s) f(e) −
∑

e∈A−
D(s) f(e).

An s−t-flow of (D, c) is a maximum s−t-flow if it has maximum size among
all s−t-flows of (D, c).

The function f specifies, for each arc e, the amount of the resource that is sent
across e. The first property in the definition of a flow, which ensures that the flow
on arc e is between zero and the capacity of e, is also called a capacity constraint.
The second property, which ensures that the amount of flow entering a vertex v

57

6.1. Maximum Flows MTH6105 (Spring 2024)

equals the amount of flow leaving that vertex, is also called flow conservation.
Note that flow conservation is not imposed on s and t. The flow conservation
constrains imply, however, that any excess amount of the resource leaving s has
to be the same as the excess amount arriving at t, i.e., that

∑
e∈A+

D(s) f(e) −∑
e∈A−

D(s) f(e) =
∑

e∈A−
D(t) f(e) −

∑
e∈A+

D(t) f(e). Indeed,∑
e∈A+

D(s)

f(e) −
∑

e∈A−
D(s)

f(e) +
∑

e∈A+
D(t)

f(e) −
∑

e∈A−
D(t)

f(e) =
∑

v∈V(D)

(∑
e∈A+

D(v)

f(e) −
∑

e∈A−
D(v)

f(e)
)
= 0,

where the first equality holds because, by flow conservation,
∑

e∈A−
D(v) f(e) −∑

e∈A+
D(v) f(e) = 0 for all v ∈ V(D) \ {s, t}, and the second equality because f(e)

appears exactly twice in the sum for each e ∈ A(D), once with positive sign and
once with negative sign. The excess amount leaving s and arriving at t is the size
of the flow.

Since capacities are non-negative, a flow exists for every network, namely the
flow that is equal to zero for every arc. That a maximum flow exists for every
network is less obvious but also true. We will prove this later for the special case
where all capacities are integers. For arbitrary non-negative capacities it can be
shown by using that the set of flows is compact and the function that maps flows
to their size is continuous.

Example 6.2. The following directed network represents the road network in
the center of a small city, consisting of six roundabouts v1, . . . , v6 that are
connected by a set of one-way streets. Cars can only enter the city center at
v1 and leave it at v6, and for each road the maximum number of cars is given
that could travel along this road per second.

v1

v2

v3

v4

v5

v6

2

3

2

2

1

1

1

3

4

Consider the function f with

f(v1v2) = 1, f(v1v3) = 1, f(v2v4) = 2,

f(v3v2) = 1, f(v3v5) = 1, f(v4v3) = 1,

f(v4v5) = 0, f(v4v6) = 1, f(v5v6) = 1.

It is easily verified that f is a v1−v6-flow of the network and that its size is 2.

58

6.2. Minimum Cuts MTH6105 (Spring 2024)

However, f is not a maximum v1−v6-flow, because the function g with

g(v1v2) = 2, g(v1v3) = 1, g(v2v4) = 2,

g(v3v2) = 0, g(v3v5) = 1, g(v4v3) = 0,

g(v4v5) = 2, g(v4v6) = 0, g(v5v6) = 3

is also a v1−v6-flow and has size 3.

6.2 Minimum Cuts

It was clear how we can show that a flow is not a maximum flow: we just give
another flow with larger size. But how could we convince ourselves that a flow is
a maximum flow? Consider the set S = {v1, v2, v3} and the set A+

D(S)∩A−
D(V(D)\

S) = {v2v4, v3v5} of arcs with tail in S and head outside S. Intuitively, as v1 ∈ S

and v6 /∈ S, any amount of flow that travels from v1 to v6 must at some point
leave the set S, and it must do so by crossing either v2v4 or v3v5. This means
that the size of any v1−v6-flow is bounded from above by c(v2v4) + c(v3v5) = 3.
The v1−v6-flow g has size 3 and must therefore be a maximum flow. The set S is
in this context called a v1−v6-cut because it separates v1 from v6, and the sum
of the capacities of the arcs that cross the cut is referred to as the capacity of the
cut.

Definition 6.3 (cut, capacity, minimum cut). Let (D, c) be a directed network,
s, t ∈ V(D). A set S ⊆ V(D) is an s−t-cut of D if s ∈ S and t /∈ S. The
capacity of an s−t-cut S is equal to C(S) =

∑
e∈A+

D(S)∩A−
D(V(D)\S) c(e). An

s−t-cut of (D, c) is a minimum s−t-cut if it has minimum capacity among
all s−t-cuts of (D, c).

We will now show that the size of s−t-flows is indeed bounded by the capacity
of s−t-cuts.

Lemma 6.4. Let (D, c) be a directed network, s, t ∈ V(D). Let f be an
s−t-flow of (D, c) and S an s−t-cut of (D, c). Then |f| ⩽ C(S).

Proof. For U,W ⊆ V(D), let F(U,W) denote the overall amount of flow on arcs
with tail in U and head in W, i.e., F(U,W) =

∑
e∈A+

D(U)∩A−
D(W) f(e). We claim

that

|f| =
∑

e∈A+
D(s)

f(e) −
∑

e∈A−
D(s)

f(e)

=
∑

v∈S

(∑
e∈A+

D(v)
f(e) −

∑
e∈A−

D(v)
f(e)

)
= F(S, V(D)) − F(V(D), S)

59

6.3. Residual Capacities and Augmenting Paths MTH6105 (Spring 2024)

= F(S, S) + F(S, V(D) \ S) − F(V(D) \ S, S) − F(S, S)

= F(S, V(D) \ S) − F(V(D) \ S, S) ⩽ F(S, V(D) \ S) ⩽ C(S).

Indeed, the second equality holds because t /∈ S and thus, by flow conservation,∑
e∈A+

D(v) f(e) −
∑

e∈A−
D(s) f(v) = 0 for all v ∈ S \ {s}. The first inequality holds

because f(e) ⩾ 0 for all e ∈ A(D), the second inequality because f(e) ⩽ c(e) for
all e ∈ A(D).

It follows immediately that a flow and a cut with equal size and capacity must
in fact be a maximum flow and a minimum cut.

Corollary 6.5. Let (D, c) be a directed network, s, t ∈ V(D). Let f be an
s−t-flow of (D, c) and S an s−t-cut of (D, c) such that |f| = C(S). Then f is
a maximum s−t-flow of (D, c), and S is a minimum s−t-cut of (D, c).

Example 6.6. Again consider the network of Example 6.2. The v1−v6-flow
g has size |g| = 3. S = {v1, v2, v3} is a v1−v6-cut with capacity C(S) = 3.
Thus, by Corollary 6.5, |g| is a maximum v1−v6-flow and S is a minimum
v1−v6-cut.

6.3 Residual Capacities and Augmenting Paths

Definition 6.7 (residual capacity, residual network). Let (D, c) be a directed
network, f an s−t-flow of (D, c). Then the residual capacity cf(u, v) between
u ∈ V(D) and v ∈ V(D) is

cf(u, v) =

c(uv) − f(uv) + f(vu) if uv ∈ A(D) and vu ∈ A(D)

c(uv) − f(uv) if uv ∈ A(D) and vu /∈ A(D)

f(vu) if uv /∈ A(D) and vu ∈ A(D)

0 otherwise.

The residual network for (D, c) and f is the directed network (R, cf) where
V(R) = V(D) and A(R) = {uv : u, v ∈ V(D), cf(u, v) > 0}.

It is important to note that the residual network may contain arcs not con-
tained in the original network. If uv ∈ A(D) and f(uv) > 0, then cf(v, u) > 0

and the residual network contains the arc vu even if the original network does
not. This makes sense because the overall flow from v to u can be increased by
decreasing the flow f(uv) in the opposite direction.

60

6.3. Residual Capacities and Augmenting Paths MTH6105 (Spring 2024)

Example 6.8. Again consider the network of Example 6.2 and the v1−v6-flow
f, which we have seen is not a maximum v1−v6-flow. The residual network
for the network and flow f looks as follows.

v1

v2

v3

v4

v5

v6

1

1

1

1

1

2
1 1 1

3

2

1

3

Imagine that we find an s−t-path in the residual network. By definition the
residual capacity will be positive for every consecutive pair of vertices along the
path, and we can send some positive amount of flow along the path by increasing
the flow for every consecutive pair of vertices by this amount. For every vertex
on the path except s and t, the overall amount of flow entering the vertex and
the overall amount of flow leaving the vertex will increase by the same amount,
so flow conservation will not be affected. An s−t-path in the residual network
is also called an augmenting path, because it allows us to augment the current
flow.

Definition 6.9 (flow augmenting path, path residual capacity, forward arc, back-
ward arc). Let (D, c) be a directed network, s, t ∈ V(D). Let f be an s−t-flow
of (D, c). Let P = v0v1v2 . . . vm be a sequence of distinct vertices in V(D).
Then P is an f-augmenting s−t-path if v0 = s, vm = t, and cf(vi−1, vi) > 0

for all i ∈ [m]. The residual capacity of P is cf(P) = mini∈[m] cf(vi−1, vi).
An arc e ∈ A(D) is a forward arc on P if it has tail vi−1 and head vi for
some i ∈ [m], and a backward arc on P if if it has tail vi and head vi−1 for
some i ∈ [m].

Lemma 6.10. Let (D, c) be a directed network, s, t ∈ V(D), and f be an
s−t-flow of (D, c). Let P be an f-augmenting s−t-path, and let F ⊆ A(D)

and B ⊆ A(D) the sets of forward and backward arcs on P. Let g : A(D) → R
such that

g(uv) =

max{f(uv) − cf(P), 0} if uv ∈ B,

f(uv) + max{cf(P) − f(vu), 0} if uv ∈ F and vu ∈ B,

f(uv) + cf(P) if uv ∈ F and vu /∈ B,

f(uv) if uv /∈ F ∪ B.

Then g is an s−t-flow of (D, c) and |g| = |f|+ cf(P).

61

6.3. Residual Capacities and Augmenting Paths MTH6105 (Spring 2024)

It is straightforward if a bit tedious to verify that g satisfies the capacity and
flow conservation constraints and the excess amount leaving s is greater by cf(P)

compared to f. We leave this as an exercise.

Example 6.11. Again consider the network of Example 6.2 and the
v1−v6-flow f. We can see from the residual network in Example 6.8
that P = v1, v3, v4, v5, v6 is an f-augmenting v1−v6-path, and cf(P) =

min{cf(v1, v3), cf(v3, v4), cf(v4, v5), cf(v5, v6)} = min{2, 1, 3, 3} = 1. By aug-
menting f as in Lemma 6.10 we obtain the flow h with

h(v1v2) = f(v1v2) = 1, h(v1v3) = f(v1v3) + 1 = 2,

h(v3v2) = f(v3v2) = 1, h(v2v4) = f(v2v4) = 2,

h(v4v3) = f(v4v3) − 1 = 0, h(v3v5) = f(v3v5) = 1,

h(v4v6) = f(v4v6) = 1, h(v4v5) = f(v4v5) + 1 = 1,

h(v5v6) = f(v5v6) + 1 = 2.

Flow h has size |h| = |f| + 1 = 3, and the v1−v6-cut {v1, v2, v3} with ca-
pacity 3 shows that it is a maximum v1−v6-flow. Note that h is different
from the maximum v1−v6-flow g given in Example 6.2, which illustrates that
maximum flows need not be unique.

It now seems natural to ask whether we can find a maximum flow by repeatedly
finding an augmenting path and thus a flow of greater size. It turns out that this
will work, because we can always find an augmenting path unless we are prevented
from doing so by a minimum cut.

Lemma 6.12. Let (D, c) be a directed network, s, t ∈ V(D), and f be an
s−t-flow of (D, c). Then one of the following is true: (i) there exists an f-
augmenting s−t-path; (ii) there exists an s−t-cut S of (D, c) with C(S) = |f|.

Proof. Let S be the set of all vertices v such that there exists an f-augmenting
s−v-path in (D, c). If t ∈ S, there exists an f-augmenting s−t-path in (D, c).

Now consider the case where t /∈ S, i.e., where S is an s−t-cut. As in the proof
of Lemma 6.4, let F(U,W) denote the overall amount of flow on arcs with tail in
U ⊆ V(D) and head in W ⊆ V(D). Since S is an s−t-cut, we know from the proof
of Lemma 6.4 that |f| = F(S, V(D) \ S) − F(V(D) \ S, S) ⩽ F(S, V(D) \ S) ⩽ C(S).
We will see that both inequalities in fact hold with equality. By definition of
S, the flow across any arc with tail in S and head in V(D) \ S must equal the
capacity of that arc. That is, f(e) = c(e) for any e ∈ A+

D(S) ∩ A−
D(V(D) \ S),

and thus F(S, V(D) \ S) = C(S). Similarly, the flow across any arc with tail
in V(D) \ S and head in S must be equal to zero. That is, f(e) = 0 for any
e ∈ A+

D(V(D) \ S) ∩ A−
D(S), and thus F(V(D) \ S, S) = 0. Thus C(S) = |f|, as

62

6.4. The Ford-Fulkerson Algorithm MTH6105 (Spring 2024)

claimed.

Example 6.13. Consider the residual network for the network of Example 6.2
and the v1−v6-flow h of Example 6.11, which looks as follows.

v1

v2

v3

v4

v5

v6

1

2

1 1

2

1

1
1 1

1

2

2

1

2

The set of vertices reachable from v1 along a h-augmenting path is S =

{v1, v2, v3}. For the two arcs with tail in S and head outside S, v2v4 and v3v5,
flow is equal to capacity. For the unique arc with tail outside S and head in
S, v4v3, flow is equal to 0. This implies that C(S) = |h|, so S is a minimum
v1−v6-cut and h a maximum v1−v6-flow.

Lemma 6.4 and Lemma 6.12 together imply the following result.

Theorem 6.14 (max-flow min-cut). Let (D, c) be a directed network and s, t ∈
V(D). Let f be a maximum s−t-flow of (D, c), and S a minimum s−t-cut of
(D, c). Then |f| = C(S).

6.4 The Ford-Fulkerson Algorithm

Our strategy for finding a maximum flow is now clear. We start from some flow,
like the one that is zero for every arc, and repeatedly augment the flow until this
is no longer possible. When this process terminates, we are guaranteed to have
found a maximum flow, and we also obtain a minimum cut to prove this.

Algorithm 6.15 (Ford-Fulkerson). Let (D, c) be a directed network. The Ford-
Fulkerson algorithm starts from f : A(D) → R with f(e) = 0 for all e ∈ A(D)

and then repeats the following steps:
1. Let P be an f-augmenting s−t-path of (D, c). If no such path exists,

then stop.
2. Augment f by sending cf(P) units of flow along P, as in Lemma 6.10.

It is easy to see that Steps 1 and 2 can be performed efficiently. Indeed, the
residual network for a given flow can be computed in time O(|V(D)| · |A(D)|).
Given the residual network, an augmenting path can be found in time O(|V(D)| ·
|A(D)|) using tree search. Given an augmenting path, the flow can finally be

63

6.4. The Ford-Fulkerson Algorithm MTH6105 (Spring 2024)

updated in time O(|A(D)|). Bounding the number of iterations seems more dif-
ficult, and in fact it is not even clear that this number is finite. In the special
case where all capacities are integers, i.e., where c(e) ∈ N for all e ∈ A(D), it
is easy to show by induction over the number of iterations that throughout the
algorithm all residual capacities and all flow amounts remain integers. Indeed, all
residual capacities are differences between capacities and flows, and flow is always
increased by a minimum residual capacity. The size of the flow thus increases by
at least one in each iteration, and reaches the size of a maximum flow, which is
finite, after a finite number of iterations.

Perhaps more surprisingly, this argument also shows the existence of an in-
tegral maximum flow, i.e., of a maximum flow where the flow on each arc is an
integer.

Theorem 6.16. Let (D, c) be a directed network such that c(e) ∈ N for all
e ∈ A(D). Let s, t ∈ V(D). Then there exists a maximum s−t-flow f of
(D, c) such that f(e) ∈ N for all e ∈ A(D).

The argument does not show that Algorithm 6.15 is an efficient algorithm.
Indeed, if the augmenting paths are not chosen carefully, the algorithm may take
|f| iterations, where f is a maximum flow. As the size of the input to the algorithm
is logarithmic in the capacities, |f| may be exponential in the size of the input.
When capacities are real numbers, it is in fact possible to construct an example
where the algorithm uses augmenting paths with smaller and smaller residual
capacity and thus never terminates. Dinitz and later Edmunds and Karp have
shown, however, that Algorithm 6.15 has running time O(|V(D)|·|A(D)|2) even for
real-valued capacities if in each iteration P is chosen to be a shortest f-augmenting
s−t-path, i.e., one that has a minimum number of vertices among all f-augmenting
s−t-paths.

64

Chapter 7

Matchings

Consider a graph G, and imagine that we pair up vertices of G in such a way
that only vertices incident to the same edge are paired up and no vertex is paired
up with more than one other vertex. The resulting subset of the edges of G is
called a matching, and we can ask for a matching in which a certain subset of the
vertices are paired up, or one that pairs up as many vertices as possible.

Definition 7.1 (matching, maximum matching, saturation, perfect matching).
Let G be a graph. A set M ⊆ E(G) is a matching of G if every vertex
v ∈ V(G) is an endpoint of at most one edge in M. A matching M of G is a
maximum matching of G if it has maximum cardinality among all matchings
of G. A matching M of G saturates X ⊆ V(G) if every v ∈ X is an endpoint of
an edge in M. A matching M of G is a perfect matching of G if it saturates
V(G).

Clearly |M| ⩽ |V(G)|/2 for any matching M of G. If M is a perfect matching
of G then |M| = |V(G)|/2, and M must also be a maximum matching.

Example 7.2. Consider the following graph.

v1 v2

v3 v4

v5 v6

v7 v8

M1 = {v1v2, v3v5, v6v8} is a matching of G. M1 saturates {v1, v2, v3, v5, v6, v8},

65

7.1. Bipartite Graphs MTH6105 (Spring 2024)

v1

v3

v2

v4

v1

v3

v2

v4

Figure 7.1: A bipartite graph and a graph that is not bipartite

but it is not a maximum matching. M2 = {v1v2, v3v4, v5v6, v7v8} is a perfect
matching of G, and thus also a maximum matching.

Since a matching cannot contains any loops or multiple edges, we can again
restrict our attention to simple graphs.

7.1 Bipartite Graphs

We will first study matchings in a restricted but important class of graphs. In
graphs from this class, every vertex is of one of two types and every edge has one
endpoint of each type.

Definition 7.3 (bipartite graph, parts). Let G be a graph. Then G is bipartite
if there exist L, R ⊆ V(G) such that L ∪ R = V(G), L ∩ R = ∅, and every edge
in E(G) has one endpoint in L and one endpoint in R. The sets L and R are
then called parts of G.

The graph on the left of Figure 7.1 is bipartite with parts L = {v1, v4} and R =

{v2, v3}. Indeed, for any bipartite graph, we can prove bipartiteness by giving two
parts, i.e., two sets L and R that satisfy the condition of Definition 7.3. The graph
on the right of Figure 7.1 is not bipartite, but this seems more difficult to show.
The following result provides a characterization that is easy to check.

Theorem 7.4. Let G be a graph. Then G is bipartite if and only if G does
not contain any cycles of odd length.

Proof. For the direction from left to right, assume that G is bipartite with parts L
and R and consider any cycle contained in G. As all edges of G have one endpoint
in L and one endpoint in R, the cycle must alternate between L and R and must
therefore have even length.

For the direction from right to left assume that G does not contain any cycles of
odd length. It suffices to show that every connected component of G is bipartite.
Let H be a connected component of G, T a spanning tree of H, and s ∈ V(H).

66

7.2. Maximimum Matchings in Bipartite Graphs MTH6105 (Spring 2024)

u1 v1

u2 v2

u3 v3

u4 v4

s t

u1 v1u1 v1

u2 v2u2 v2

u3 v3u3 v3

u4 v4u4 v4

1

1

1

1

1

1

1

1

1
1
1

1

1

1

1

1

Figure 7.2: A bipartite graph and the corresponding directed network. A match-
ing of the bipartite graph and the corresponding flow of the directed network are
shown in bold. Flow is equal to 1 for bold arcs and equal to 0 for all other arcs.

Let L = {v ∈ V(H) : the unique s−v-path in H has even length} and R{v ∈ V(H) :

the unique s−v-path in H has odd length}. Clearly L ∪ R = V(H) and L ∩ R = ∅.
Assume for contradiction that G contains an edge uv such that u, v ∈ L or u, v ∈ R.
Let P1 be the unique s−u-path in T , and P2 the unique s−v-path in T . Since P1

and P2 are paths in T , they contain a common s−x-path for some x ∈ V(T), as
well as an x−u-path Q1 and an x−v-path Q2 that do not share any vertices apart
from x. Since the length of P1 and P2 are both even or both odd, the same is
true for the lengths of Q1 and Q2. Together with the edge uv, Q1 and Q2 form
a cycle, and the length of this cycle is odd. This contradicts the assumption that
G does not contain any cycles of odd length.

Breadth-first search provides an efficient way to test whether a given graph
G is bipartite. When applied to G starting from vertex s ∈ V(G), breadth-first
search constructs a spanning tree of the connected component containing s and
arranges the vertices in this connected component in layers according to their
distance in G from s. By the definition of these layers, the endpoints of every
edge in the connected component are either in the same layer or in consecutive
layers. The connected component thus contains a cycle of odd length if and only
if the endpoints of some edge in the connected component are in the same layer.

7.2 Maximimum Matchings in Bipartite Graphs

The limited structure of bipartite graphs will allow us to find maximum matchings
by finding maximum flows in a closely related directed network.

Definition 7.5. Let G be a bipartite graph with parts L and R. Then (DG, cG)

is the directed network with V(DG) = V(G) ∪ {s, t}, A(DG) = {su : u ∈
L}∪ {uv ∈ E(G) : u ∈ L, v ∈ R}∪ {vt : v ∈ R}, and cG(e) = 1 for all e ∈ A(DG).

An example for a bipartite graph G and the corresponding directed network

67

7.2. Maximimum Matchings in Bipartite Graphs MTH6105 (Spring 2024)

(DG, cG) is shown in Figure 7.2.

We will now establish a relationship between matchings of G and s−t-flows of
(DG, cG). We first show that any matching M of G naturally gives rise to a flow
of size |M| of (DG, cG).

Lemma 7.6. Let G be a bipartite graph, and let M be a matching of G. Let
f : A(DG) → R such that f(e) = 1 if e ∈ M or if one of the endpoints of e
is equal to s or t and the other endpoint is saturated by M, and f(e) = 0

otherwise. Then f is an s−t-flow in (DG, cG), and |f| = |M|.

It is straightforward to verify that f satisfies the capacity and flow conservation
constraints and has size |M|. We leave this as an exercise.

On the other hand any integral flow f of (DG, cG), i.e., any flow where
f(e) ∈ {0, 1} for every arc e ∈ A(DG), can be turned back into a matching of
cardinality |f|.

Lemma 7.7. Let f be an s−t-flow of (DG, cG) such that f(e) ∈ {0, 1} for all
e ∈ A(DG). Let M = {uv ∈ E(G) : u ∈ L, v ∈ R, f(uv) = 1}. Then M is a
matching of G, and |M| = |f|.

Proof. For every u ∈ L,

|{uv ∈ M : v ∈ R}| = |{uv ∈ E(G) : v ∈ R, f(uv) = 1}|

⩽
∑

e∈A+
DG

(u)

f(e) =
∑

e∈A−
DG

(u)

f(e) = f(su) ⩽ 1,

where the first inequality holds by the capacity constraints for arcs e ∈ A+
DG

(u),
the second equality by the flow conservation constraint for vertex u, and the
second inequality by the capacity constraint for arc su. Analogously, for every
v ∈ R,

|{uv ∈ M : u ∈ L}| = |{uv ∈ E(G) : u ∈ L, f(uv) = 1}|

⩽
∑

e∈A−
DG

(v)

f(e) =
∑

e∈A+
DG

(v)

f(e) = f(vt) ⩽ 1.

where the first inequality holds by the capacity constraints for arcs e ∈ A−
DG

(v), the
second equality by the flow conservation constraint for vertex v, and the second
inequality by the capacity constraint for arc vt. Thus every vertex v ∈ V(G) is
an endpoint of at most one edge in M, so M is a matching.

68

7.3. Augmenting Paths MTH6105 (Spring 2024)

Moreover,

|M| = |{uv ∈ E(G) : u ∈ L, v ∈ R, f(uv) = 1}|

=
∑
u∈L

∑
e∈A+

DG
(u)

f(e) =
∑
u∈L

∑
e∈A−

DG
(u)

f(e)

=
∑
u∈L

f(su) =
∑

e∈A+
DG

(s)

f(e) −
∑

e∈A−
DG

(s)

f(e) = |f|,

where the second equality holds because f(e) ∈ {0, 1} for all e ∈ A(DG) and the
third equality by the flow conservation constraint for vertex u.

Imagine now that in order to find a maximum matching of a bipartite graph
G we apply the Ford-Fulkerson algorithm to (DG, cG). By Lemma 7.6 the al-
gorithm finds a flow f whose size equals at least the cardinality of a maximum
matching of G. However, since all capacities of (DG, cG) are integers, the algo-
rithm finds such a flow f that is integral and by Lemma 7.7 can be converted into
a matching M of G of size |f|. Since the cardinality of M is at least that of a
maximum matching, it must itself be a maximum matching. The Ford-Fulkerson
algorithm can be executed in polynomial time, and so can the construction of
(DG, cG) from G and the construction of M from f. There thus exists an efficient
algorithm for finding a maximum matching of a bipartite graph.

7.3 Augmenting Paths

In order to find maximum matchings more directly, it will be useful to investigate
what augmenting paths look like when the Ford-Fulkerson algorithm is used to
find a maximum matching.

To this end, again consider the example shown in Figure 7.2 involving the
matching M = {u1v1, u2v3, u3v4} of the bipartite graph on the left and a corre-
sponding s−t-flow f in the network on the right.

The only f-augmenting path in the network on the right is su4v3u2v1u1v2t.
If we trace this path in the graph on the left, with the exception of s and t, we
see that it alternates between edges in M and edges not in M, corresponding
respectively to forward and backward arcs in the network, and both starts and
ends with edges not in M. The Ford-Fulkerson algorithm augments flow f by
sending a flow of 1 along the augmenting path, thus increasing the flow on forward
arcs from 0 to 1 and decreasing the flow on backward arcs from 1 to 0. In the graph
on the left this corresponds to removing from M those edges that are also on the
augmenting path, and replacing them by the edges that are on the augmenting
path but not in M. We thus obtain a new matching equal to the symmetric
difference M△{u4v3, u2v3, u2v1, u1v1, u1v2} = {u1v2, u2v1, u3v4, u4v3} between
matching M and the set of edges on the augmenting path. Since the number of

69

7.3. Augmenting Paths MTH6105 (Spring 2024)

edges on the augmenting path that are not in M is greater by 1 than those that
are, the new matching has size |M|+ 1.

This motivates the following definition of augmenting paths for matchings, as
a path that alternates between edges that are and are not in the matching, and
both starts and ends with vertices not saturated by the matching.

Definition 7.8 (matching alternating path, matching augmenting path). Let G

be a graph, M a matching of G. A path in G is an M-alternating path if it
alternates between edges in M and edges in E(G)\M, and an M-augmenting
path if it is an M-alternating path and starts and ends with vertices not
saturated by M.

When it is applied to the network (DG, cG) for a bipartite graph G with parts
L and R, the Ford-Fulkerson algorithm finds in each iteration a set of maximal
trees of M-alternating paths, where M is the current matching. The root of each
of these trees is a vertex u ∈ L not saturated by M. If one of the trees contains
another vertex v ∈ V(G) that is not saturated by M, then v ∈ R and the unique
u−v-path in the tree is an M-augmenting path. A particular maximal tree T of M-
alternating paths can be found more directly by a variant of breadth-first search
in which the set of edges incident to v ∈ T that are considered for addition to T

is limited to those in M if the unique edge incident to v in T is in E(G) \M, and
limited to those in E(G)\M if the unique edge incident to v in T is in M.

Example 7.9. Consider the following bipartite graph with parts L =

{u1, u2, u3, u4, u5} and R = {v1, v2, v3, v4, v5}, and assume that we have found
the matching M1 = {u2v2, u3v3, u5v5}.

u1

v1

u2

v2

u3

v3

u4

v4

u5

v5

Let S1 = {u2, u3, u5, v2, v3, v5} be the set of vertices saturated by M1. For
each x ∈ L \ S1 = {u1, u4}, we can use a variant of breadth-first search to
construct a maximal M1-alternating tree with root x. The tree with root u1

for example looks as follows.

70

7.3. Augmenting Paths MTH6105 (Spring 2024)

u1

v2

v3

u2

u3

v1

v4

v5 u5

This tree contains the vertex v1 ∈ (V(G) \ S1) \ {u1} = {u4, v1, v4}, and
thus contains the M1-augmenting u1−v1-path P1 = u1v2u2v1. This implies
that M2 = M1△E(P1) = {u1v2, u2v1, u3v3, u5v5} is a matching of G with
|M2| = |M1|+ 1.

Let S2 = {u1, u2, u3, u5, v1, v2, v3, v5} be the set of vertices saturated
by M2. For each x ∈ L \ S2 = {u4}, we can again construct a maximal
M2-alternating tree with root x. There is only one such tree, the one with
root u4, which looks as follows.

u4

v2

v3

u1

u3

This tree does not contain any vertices in (V(G) \ S2) \ {u4} = {v4}, so M2 is
a maximum matching.

It follows from the discussion above that M is a maximum matching of a
bipartite graph G if and only G does not contain an M-augmenting path. This
turns out to hold even for graphs that are not bipartite.

Theorem 7.10. Let G be a graph, M a matching of G. Then M is a maximum
matching of G if and only if there is no M-augmenting path in G.

Proof. For the direction from left to right, assume that M is a maximum matching
of G, and for contradiction that P is an M-augmenting path. Let M ′ = M△E(P).
Then M ′ is a matching of G and |M ′| = |M+1|, which contradicts the assumption
that M is a maximum matching of G.

For the direction from right to left, assume that M is not a maximum matching
of G, and let M ′ be a matching of G with |M ′| > |M|. Let S = M△M ′, and let
H be the graph with V(H) = V(G) and E(H) = S. Each vertex v ∈ V(G) is
incident to at most two edges of S, so dH(v) ⩽ 2 for all v ∈ V(H). Each connected
component of H is thus either a path or a cycle. Moreover, dH(v) = 2 if and only if
v is incident to an edge of M and an edge of M ′, so the paths and cycles alternate
between edges in M and edges in M ′. It follows in particular that each cycle in

71

7.4. Saturating Matchings in Bipartite Graphs MTH6105 (Spring 2024)

H has even length. Since |M ′| > |M|, some connected component of H must be a
path which starts and ends with an edge of M ′. This path is an M-augmenting
path in G.

There exists an efficient algorithm, due to Edmonds, that constructs a maxi-
mum matching of a graph G by repeatedly finding an augmenting path. We have
seen that in the special case where G is bipartite, augmenting paths can be found
by a greedy algorithm. In the case where G is not bipartite, the search for an
M-augmenting path may be complicated by the presence of so-called blossoms,
cycles of length 2k + 1 in which exactly k edges belong to M. The key compo-
nent of Edmonds’ algorithm is a procedure to find and remove blossoms, but the
details of this procedure are beyond the scope of this module.

7.4 Saturating Matchings in Bipartite Graphs

Consider a bipartite graph G with parts L and R such that |L| ⩽ |R|. Since every
edge in a matching of G has exactly one endpoint in L, any matching of G has
size at most |L|. On the other hand, any matching of G of size |L| saturates L.
The following result characterizes when G possesses such a matching.

Theorem 7.11 (Hall). Let G be a bipartite graph with parts L and R such that
|L| ⩽ |R|. Then G has a matching that saturates L if and only if |NG(X)| ⩾ |X|

for every X ⊆ L, where NG(X) = ∪v∈XNG(v).

Proof. For the direction from left to right, let M be a matching that saturates L.
Let X ⊆ L. Since every vertex in L is the endpoint of at most one edge in M, and
every element of L is an endpoint of some edge in M, we can define a function
g : X → NG(X) that maps v ∈ X to the other endpoint of the edge in M incident
to v. Since every vertex in R is the endpoint of at most one edge in M, g is
injective and thus |NG(X)| ⩾ |X|.

For the direction from right to left, assume that G does not have a match-
ing that saturates L. Let M be a maximum matching of G, and let u ∈ L be
unsaturated by M. Let W be the set of all vertices v ∈ V(G) such that there
exists an M-alternating u−v-path in G. Let X = W ∩ L and Y = W ∩ R, and
note that u ∈ X. To complete the proof it suffices to show that |NG(X)| < |X|.
M is a maximum matching of G, so by Theorem 7.10 there is no M-augmenting
path in G. M must therefore saturate W \ {u}. Specifically, for every x ∈ X \ {u}

there exists exactly one y ∈ Y such that xy ∈ M, and for every y ∈ Y there exists
exactly one x ∈ X \ {u} such that xy ∈ M. This means that M defines a bijection
between X \ {u} and Y, so |X \ {u}| = |Y| and thus |X| = |Y| + 1. Now consider
y ∈ NG(X) and let x ∈ X such that xy ∈ E(G). If xy ∈ M, then y precedes x

on any M-alternating u−x-path. If xy /∈ M, then any M-alternating u−x-path

72

7.4. Saturating Matchings in Bipartite Graphs MTH6105 (Spring 2024)

P that does not contain y can be turned into an M-alternating u−y-path by ap-
pending edge xy and vertex y to P. In both cases there exists an M-alternating
u−y-path, so y ∈ Y and thus NG(X) ⊆ Y. Therefore |NG(X)| ⩽ |Y| = |X|−1 < |X|,
as required.

It is worth pointing out that this proof is constructive, in the sense that a set
X ⊆ L with |NG(X)| < |X| can be found efficiently when it exists. With X at hand,
it is then obvious that G cannot have a matching that saturates L.

Example 7.12. Again consider the bipartite graph of Example 7.9 and the
matching M2 of this graph. In an attempt to find a matching of cardinality
greater than that of M2 we constructed a maximal M2-alternating tree with
root u2, and the vertex set of this tree is the set W = {u4, v2, v3, u1, u3}

of vertices reachable from u2 along an M2-alternating path. Taking X =

W ∩ L = {u1, u3, u4} to be the set of vertices in W that are in the same part
of the graph as u2, we see that NG(X) = {v2, v3} and thus |NG(X)| < |X|.
There can thus be no matching saturating X, no matching saturating L, and
no matching with cardinality greater than |L| − 1 = 4. Matching M2 has
cardinality 4 and is thus a maximum matching.

Example 7.13. Consider a situation where each member of a set R of workers
is qualified to complete a subset of a set L of jobs, and we wonder if it is
possible to assign jobs to workers such that (i) each job is assigned to a
worker, (ii) no worker is assigned more than one job, and (iii) workers are
only assigned jobs they are qualified to complete. We can model this situation
by a bipartite graph with parts L and R where each edge corresponds to a job
and a worker qualified to complete this job. An assignment of jobs to workers
as desired then corresponds to a matching in this graph that saturates L. If
no such matching exists, Theorem 7.11 yields a subset X ⊂ L of the jobs such
that the number of workers qualified to complete jobs in X is smaller than
|X|.

73

7.4. Saturating Matchings in Bipartite Graphs MTH6105 (Spring 2024)

74

Chapter 8

Euler Trails and Tours

Let us now return to the problem of the Seven Bridges of Königsberg, in the
context of which Leonhard Euler laid the foundations of graph theory. The city
of Königsberg, now Kaliningrad, is situated on the Pregolya river, and during
Euler’s time the two sides of the river and two large islands were connected by
seven bridges. A graph representing this situation is shown in Figure 8.1. The
problem of the seven bridges asks whether it is possible to walk around the city,
cross each bridge exactly once, and return to the starting point. It can be stated
formally as a question concerning the existence of a tour that visits every edge
of the graph. We may also drop the requirement that we need to return to the
starting point and ask instead for a trail that visits every edge.

Definition 8.1 (Euler trail, Euler tour). An Euler trail in a graph is a trail
that contains every edge of the graph. An Euler tour in a graph is an Euler
trail that is closed.

Recall that a trail is walk in which all edges are distinct. An Euler trail or
tour thus visits every edge exactly once. The graph in Figure 8.2 for example
contains the Euler trail v4, v2, v1, v3, v5, v2, v3, v4, v5.

An obvious necessary condition for the existence of an Euler tour is that all
edges are contained in the same connected component and that all vertices have
an even degree. This condition, which was already given by Euler, turns out to
also be sufficient.

Theorem 8.2. Let G be a connected graph. Then G contains an Euler tour
if and only if dG(v) is even for all v ∈ V(G).

Proof. For the direction from left to right, assume that G contains an Euler
tour R. Let v ∈ V(G), and observe that the number of edges that immediately
precede v in R is the same as the number of edges that immediately follow v in R.
Since R contains every edge of G exactly once, dG(v) is equal to the number of

75

MTH6105 (Spring 2024)

Figure 8.1: A graph representing the seven bridges of Königsberg

v2

v1

v3

v4 v5

Figure 8.2: A graph containing an Euler trail

edges that immediately precede or follow v in R, and this number is even.

For the direction from right to left, assume that dG(v) is even for all v ∈ V(G).
We will show by induction on |E(G)| that G contains an Euler tour. First assume
that |E(G)| = 0. Because G is connected, |V(G)| ⩽ 1. If |V(G)| = 0 the empty
sequence is an Euler tour of G, if |V(G)| = 1 the sequence containing the unique
element of V(G) is an Euler tour of G. Now assume that |E(G)| > 0, and that
all connected graphs with fewer edges than G in which all vertices have an even
degree contain an Euler tour. Since |E(G)| > 0, and since dG(v) is even for
all v ∈ V(G), G is not a tree and thus contains a cycle. Let R be a tour of
maximum length in G, and observe that |E(R)| > 0. Assume for contradiction
that R is not an Euler tour of G. Let H be the graph with V(H) = V(G) and
E(H) = E(G) \E(R), and observe that E(H) ̸= ∅. Let J be a connected component
of H such that E(J) ̸= ∅. Then dJ(v) = dG(v) − dR(v) for all v ∈ V(J), which
is even because both dG(v) and dR(v) are even. Thus J is a connected graph in
which all vertices have an even degree, and |E(J)| < |E(G)|, so by the induction
hypothesis J contains an Euler tour Q. Moreover, since G is connected, there
exists a vertex u ∈ V(J) ∩ V(R). There thus exists a tour in G that starts at u,
follows R, and then follows Q. This tour is longer than R, which contradicts the
assumption that R has maximum length.

The condition for the existence of an Euler trail is only slightly more compli-
cated.

76

MTH6105 (Spring 2024)

Corollary 8.3. Let G be a connected graph. Then G contains an Euler trail
if and only if |{v ∈ V(G) : dG(v) is odd}| ⩽ 2.

Proof. For the direction from left to right assume that G contains an Euler trail R.
Let s be the first vertex of R, t the last vertex of R. Let v ∈ V(G) \ {s, t}, and
observe that the number of edges that immediately precede v in R is the same
as the number of edges that immediately follow v in R. Since R contains every
edge of G exactly once, dG(v) is equal to the number of edges that immediately
precede or follow v in R, and this number is even. The only vertices whose degrees
may be odd are s and t, and thus |{v ∈ V(G) : dG(v) is odd}| ⩽ 2.

For the direction from right to left assume that |{v ∈ V(G) : dG(v) is odd}| ⩽ 2.
By Corollary 1.13, the number of vertices of G with odd degree must be either
zero or two. If there are no vertices with odd degree, then by Theorem 8.2 G

contains an Euler tour, which is also an Euler trail. Now assume that there are
two vertices u, v ∈ V(G) with odd degree. Let H be the graph with V(H) = V(G)

and E(H) = E(G)∪ {e}, where e is a new edge with endpoints u and v. Then H is
connected and dH(v) is even for all v ∈ V(H), so by Theorem 8.2 it contains an
Euler tour R. If we write R such that it ends with edge e and vertex v, and then
remove these last two elements, we obtain an Euler trail of G.

In the graph of Figure 8.1 all four vertices have an odd degree, so the graph
does not contain an Euler trail. This shows that it was impossible to cross each
of the seven bridges of Königsberg exactly once, even without the additional
requirement of returning to the starting point.

The proofs of Theorem 8.2 and Corollary 8.3 are constructive, and can be
turned into an algorithm that finds an Euler trail if it exists.

Algorithm 8.4 (Euler trail). Let G be a connected graph, s, t ∈ V(G). Assume
that dG(v) is even for all v ∈ V(G)\ {s, t}. Let R be a maximal trail in G that
starts at s, and repeat the following steps:

1. Let x ∈ V(R) with dG(x) > dR(x). If no such vertex exists, then stop.
R is an Euler trail of G.

2. Let H be the graph with V(H) = V(G) and E(H) = E(G) \ E(R).
3. Let Q be a maximal trail in H that starts at x.
4. Replace one of the occurences of x in R by Q.

The initial maximal trail R in G can be found by starting from vertex s and
repeatedly following an unvisited edge incident to the current vertex until such
an edge no longer exists. If dG(s) and dG(t) are odd the trail must end at t,
if dG(s) and dG(t) are even it must end at s and must therefore be a tour. It
then remains a trail or a tour until the algorithm terminates. The maximal trail
Q in Step 3 can be found by starting from vertex x and repeatedly following an

77

MTH6105 (Spring 2024)

unvisited edge incident to the current vertex until such an edge no longer exists.
The trail must end at x and must therefore be a tour.

To achieve a running time of O(|E|), it suffices to show that a vertex x ∈ V(R)

with dG(x) > dR(x) and an edge in E(G) \ E(R) incident to a given vertex can
be found in constant time. This can be done by maintaining a list of edges in
E(G) \ E(R) incident to each vertex, as well as a list of vertices for which there is
at least one such edge.

Example 8.5. Consider the following graph.

v1 v2 v3 v4

v5 v6 v7 v8

Vertices v2 and v3 are the only vertices with odd degree, so the graph contains
an Euler trail from v2 to v3. If Algorithm 8.4 is started from vertex v2, it may
for example find the maximal trail R = v2, v6, v3, v7, v4, v8, v3. It may then
start from the vertex v6, which is both contained in R and an endpoint of an
edge not contained in R, to find the maximal trail Q = v6, v7, v2, v5, v1, v6.
Replacing v6 in R by Q yields the trail v2, v6, v7, v2, v5, v1, v6, v3, v7, v4, v8, v3,
which is an Euler trail.

78

	Introduction and Basic Definitions
	Graphs
	Representations of Graphs
	Graph Isomorphism
	Subgraphs
	Neighborhoods and Degrees
	Digraphs and Networks

	Paths, Cycles, and Trees
	Connectivity
	Trees
	Characterizations of Trees
	Counting Trees
	Spanning Trees

	Complexity of Algorithms and Problems
	Input and Running Time
	Asymptotic Upper Bounds
	Complexity of Problems: P and NP

	Graph Traversal
	Breadth-First and Depth-First Search
	Connected Components
	Paths and Cycles
	Strongly Connected Components
	Directed Cycles

	Minimum Spanning Trees and Shortest Paths in Networks
	Minimum Spanning Trees
	Shortest Paths for Non-Negative Weights
	Shortest Directed Paths
	Directed Cycles
	Longest Paths in Directed Acyclic Networks

	Network Flows
	Maximum Flows
	Minimum Cuts
	Residual Capacities and Augmenting Paths
	The Ford-Fulkerson Algorithm

	Matchings
	Bipartite Graphs
	Maximimum Matchings in Bipartite Graphs
	Augmenting Paths
	Saturating Matchings in Bipartite Graphs

	Euler Trails and Tours

