MTH6105 — Algorithmic Graph Theory Spring 2024

Assessed Coursework 2 F. Fischer

This assessment consists of three exercises, which carry equal weight and together
contribute 10% of your mark for the module. Please upload your answers before
the deadline.

Any work you submit must be your own. You may discuss the exercises with other
students, but you must write up your solution yourself. Copying a solution or submitting
someone else’s solution constitutes an assessment offence.

1. Consider the network (G, w) with

V(G) ={a,b,c,d,e, f},
E(G) = {ab,ac,ad,ae,af,be,bd, be,bf, cd, ce,cf,de,df ef},
and
w(ab) =9, w(ac) =8, w(ad) =12, w(ae) = 3, w(af) =15,
w(bc) =5, w(bd) = 6, w(be) =13,  w(bf) =10, w(cd) = 4,
w(ce) =14, w(cf)=2, w(de) =16, w(df)=11, w(ef)=

(a) Use Kruskal’s algorithm to find a minimum spanning tree of (G, w). List the
edges of the tree in the order in which they are added, and draw the tree.

(b) Show that the minimum spanning tree found by Kruskal’s algorithms is in fact
the unique minimum spanning tree of (G, w).

Solution:

(a) The following ordering of the edges is non-decreasing in weight, and in fact is
the only ordering with this property:

cf, ae, cd, be, bd, ef, ac, ab, bf, df, ad, be, ce, af, de.

Kruskal’s algorithm adds edges to the spanning tree in this order, unless adding
an edge would create a cycle. It thus adds the edges

cf, ae, cd, be, ef

and obtains the following spanning tree:

b
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(b) The spanning tree 7" obtained by the two algorithms is unique if and only if
every edge e € FE(G) \ E(T) is the unique edge of maximum weight in the
unique cycle formed by e together with the edges of 1. This condition is
clearly satisfied for all edges in (E(G) \ E(T)) \ {bd}, because their weight is
greater than that of all edges in E(T"). It is also satisfied for edge bd because
6 = w(bd) > max{w(bc),w(cd)} = max{5,4}.

2. Consider the following network (G, w).

(%) 4 s

(% U7

() 2 Vg

(a) Use Dijkstra’s algorithm to find a shortest v;—vz-path. Give V(T) and E(T)
after each iteration of the algorithm.

(b) Explain the effect each of the following changes of the length of a single edge
would have on the length of a shortest v, —wv;-path:

(i) an increase of w(vsvy) from 1 to 2;
(ii) a decrease of w(vgv7) from 2 to 1;
(iii) a decrease of w(vsvs) from 4 to 1.

Solution:

(a) The algorithm may for example construct 7" as follows.

V(T) ={u} E(T)=10 6(v1) =0
V(T) = {v,v3} E(T) = {vvs} d(vg) =1
V(T) = {v1,v3,v2} E(T) = {vvs3,v1v2} d(vg) =2
V(T) = {v1,vs3, 02,04} E(T) = {v1vs, v1v9, 304 } d(vg) =2
V(T) = {vy,v3, 09,04, 06 } E(T) = {v1v3, v109, 304, v306}  (vg) = 3
V(T) = {v1,vs3, va, vy, Vg, V5 } E(T) = {v1v3, v1v9, V304, V4V, VgUs }

d(vg) =4
V(T) = {v1,v3, 09, 04,06, 05,07}  E(T) = {v1v3, 0109, U304, V406, VU5, VgU7 }

d(v7) =5

Note that the algorithm has a choice whether to first include vivs or vsuy,
which it can make in an arbitrary way. The unique v;—v7-path in 7', the path
P = vy, v3, v, v7, has length §(v7) = 5 and is a shortest vy —vr-path in (G, w).
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(b)

(i) The shortest v;—vz-path P determined by Dijkstra’s algorithm does not
contain the edge vsvy. An increase of w(vsvy) thus does not affect the
length of P, and it cannot decrease the length of any other path. This
implies that P remains a shortest v;—wv;-path.

(ii)) The shortest v;—wvr;-path P determined by Dijkstra’s contains the edge
vev7. A decrease of w(vgvr) thus decreases the length of P by the same
amount, and cannot decrease the length of any other path by more than
this amount. This implies that P remains a shortest v;—wvz-path, and its
length decreases by 1.

(iii) The shortest v;—vs-path P determined by Dijkstra’s algorithm does not
contain the edge v3vs. A decrease of w(v3vs) thus does not affect the length
of P, but it may decrease the length of other paths and thus create a new
shortest path. Indeed, we can apply Dijkstra’s algorithm to the modified
network to find a new shortest path vy, vs, vs, v7 of length 4.

3. Consider a network (G,w). Let ¢ € R, and let m : E(G) — R such that m(e) =
w(e) + c for all e € E(G).

(a)
(b)

Show that 7" is a minimum spanning tree of (G, w) if and only if it is a minimum
spanning tree of (G, m).

What is the analogous claim for shortest paths in (G,w) and (G, m)? Prove
this claim or provide a counterexample showing that it is not true.

Solution:

(a)

Both networks have the same set of spanning trees, namely the set of spanning
trees of G. Consider two arbitrary spanning trees S and 7T of GG, and let
§ =2 censwle) and t =3 pp w(e). Since S and T are spanning trees of
G, |E(S)| = [E(T)] = [V(G)| = 1. Thus ). gg m(e) = s+ (|V(G)] = 1)c and
>cen ™€) =t + (|[V(G)] — 1)c. A spanning tree thus has minimum weight
in (G, w) if and only if it has minimum weight in (G, m).

The claim is that a path in G is a shortest s—t-path in (G, w) if and only if it
is a shortest s—t-path in (G, m). To see that the claim is false, consider the
following two networks.

2 4

The network on the right has been obtained from the network on the left by
increasing the weight of every edge by 2. The unique shortest a—c-path in
the network on the left is a, b, ¢, whereas the unique shortest a—c-path in the
network on the right is a, c.




