Random Processes - 2023/24

Problem Sheet 1

The questions on this sheet are based on the material on the Markov property and transition probabilities from Week 1 lectures. I've also given pointers to some recent exam paper questions on this material ${ }^{1}$. This sheet is not for assessment. We will discuss selected questions from it in the Week 2 seminar.

1. A standard fair 6 -sided die is rolled repeatedly. Let X_{i} be the largest number seen in the first i rolls.
(a) Explain briefly why $\left(X_{1}, X_{2}, X_{3}, \ldots\right)$ is a Markov chain.
(b) Write down the state space, transition matrix and transition graph.
(c) I repeat the experiment using the fair die for the first 3 rolls and then switching to a biased die. What is different about this process?

A magician modifies the die so that it behaves normally on the first roll but thereafter it can never produce the same number twice in succession with the other 5 possibilities being equally likely. As before, X_{i} is the largest number seen in the first i rolls.
(d) Is $\left(X_{1}, X_{2}, X_{3}, \ldots\right)$ still a Markov chain? If your answer is yes give the new transition probabilities. If your answer is no give a specific violation of the Markov property.

The magician modifies the die again so that it behaves normally on the first roll but thereafter it can never produce a roll of k followed immediately by a roll of $6-k$ with the other 5 possibilities being equally likely. For example if the first roll is 2 then the second roll cannot be 4 . As before, X_{i} is the largest number seen in the first i rolls.
(e) Is $\left(X_{1}, X_{2}, X_{3}, \ldots\right)$ still a Markov chain? If your answer is yes give the new transition probabilities. If your answer is no give a specific violation of the Markov property.

[^0]2. Let $\left(X_{0}, X_{1}, X_{2}, \ldots\right)$ be a Markov chain on state space $\{1,2,3,4\}$ with transition matrix
\[

\left($$
\begin{array}{cccc}
0 & 1 / 4 & 3 / 4 & 0 \\
1 / 3 & 0 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3 & 0 \\
0 & 0 & 0 & 1
\end{array}
$$\right) .
\]

(a) Draw the transition graph of the chain.
(b) Find the following probabilities, giving your reasoning in each case.
(i) $\mathbb{P}\left(X_{1}=3 \mid X_{0}=2\right)$
(ii) $\mathbb{P}\left(X_{2}=3 \mid X_{1}=2\right)$
(iii) $\mathbb{P}\left(X_{2}=3 \mid X_{1}=2, X_{0}=1\right)$
(iv) $\mathbb{P}\left(X_{2}=3, X_{1}=2 \mid X_{0}=1\right)$
(v) $\mathbb{P}\left(X_{2}=3 \mid X_{0}=3\right)$
(vi) $\mathbb{P}\left(X_{1000}=1 \mid X_{0}=4\right)$
3. Let $\left(X_{0}, X_{1}, X_{2}, \ldots\right)$ be a Markov chain on state space $\{1,2,3,4\}$ with the non-zero transition probabilities being

$$
p_{11}=p_{44}=1, \quad p_{21}=p_{23}=p_{24}=1 / 3, \quad p_{31}=p_{32}=1 / 2
$$

(a) Draw the transition graph.
(b) What is special about states 1 and 4?
(c) Calculate the following:
(i) $\mathbb{P}\left(X_{n} \neq 1,4 \mid X_{0}=2\right)$,
(ii) $\mathbb{P}\left(X_{n}=4 \mid X_{0}=2\right)$.
(d) What does (c) tell you about the behaviour of the process as n tends to infinity?

Some recent exam questions on the material in Week 1 include:

- January 2022 Exam. Question 4(a)
- January 2023 Exam. Question 4(a)

Robert Johnson
r.johnson@qmul.ac.uk

[^0]: ${ }^{1}$ Past exam papers are available at the QMplus exam paper repository https://qmplus.qmul.ac.uk/mod/data/view.php?id=401329

