
WEEK 1 NOTES

1. BASIC CONCEPTS

1.1. What is PDE. A partial differential equation (PDE) is an equation for a function
U = U(x1, . . . , xn) of n ≥ 2 variables involving partial derivatives of U . If the equation
depends on only one variable one speaks of an ordinary differential equation. Partial dif-
ferential equations are key to describing the fundamental interactions of Nature and in the
modelling of a wide range of systems (economics, finance, population dynamics, ecology,
...).

Notation. In this course we will systematically use the shorthand notation

Uxi ≡
∂U

∂xi
, Uxixj ≡

∂2U

∂xi∂xj
, . . .

Definition 1.1. Let U(x1, . . . , xn) be a function of n variables. A PDE about the function
U is an equation of the form

(1.1) F (xi, U, Uxi , Uxixj , . . . ) = 0, i = 1, ..., n

Here F is a function about the variables x′is, the unknown function U and its partial deriva-
tives Ux, Uy, · · · .

Note. In this course we will be mostly interested in the case n = 2 so that (x1, x2) = (x, y)
or (x1, y1) = (x, t) — the latter choice used in problems involving time.

Concrete examples of pde’s to be considered in this course are

Ux ± Ut = 0 (advection equation in 1 + 1 dimensions),(1.2a)
Utt − Uxx = 0 (wave equation in 1 + 1 dimensions),(1.2b)
Uxx + Uyy = 0 (Laplace equation in 2 dimensions),(1.2c)
Ut − Uxx = 0 (heat equation in 1 + 1 dimensions).(1.2d)

Definition 1.2. The order of a pde is the highest derivative which appears in the equations.

Note. In this course we will only consider equations of first and second order.

The above 4 equations (and their variants) are the 4 main types of equation we will
focus on solving in this module. They come from the mathematical modelling of some
important physical phenomena.

Example 1.3 (Deduction of Heat equation in 1 + 1 dimension). .
Let U(x, t) be the temperature at the point x at time t. Consider an infinite rod, which

can be represented by R. For any point x on the rod, focus on a small interval I =
[x− δ

2 , x+ δ
2 ], of length δ and centered at x.

The total heat in the interval I is ∫ x+ δ
2

x− δ2
U(y, t)dy,

1
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and the change of total heat in I is

∂

∂t

∫ x+ δ
2

x− δ2
U(y, t)dy =

∫ x+ δ
2

x− δ2

∂

∂t
U(y, t)dy

On the other hand, we can apply Newton’s law of cooling, which states that heat flows
from the higher to lower temperature at a rate proportional to the difference, that is, the
gradient. The change rate of heat at the right end point is CUx(x+ δ

2 ) and the change rate
of heat at the left end point is CUx(x− δ

2 ). Here C is the heat constant of the material.
So the change of total heat can also be computed by

∂

∂t

∫ x+ δ
2

x− δ2
U(y, t)dy = CUx(x+

δ

2
, t)− CUx(x− δ

2
, t)

Divide both sides by δ and take the limit as δ → 0, we get

lim
δ→0

∫ x+ δ
2

x− δ2
∂
∂tU(y, t)dy

δ
= lim
δ→0

CUx(x+ δ
2 , t)− CUx(x− δ

2 , t)

δ
Ut(x, t) =CUxx(x, t).

Now define Ũ(x, t) = U(x, tC ) by a change of variable. We then have Ũ satisfies the
equation

Ũ = Ũxx,

which is the heat equation in 1 + 1 dimension.

1.2. Linear PDEs and homogeneous PDEs.

Definition 1.4. An operator is linear if
(i) L(U + V ) = LU + LV ,

(ii) L(αU) = αLU
for any functions U , V and constant α.

A partial differential equation LU = f(x, y) is called linear whenever L is linear.
Alternatively, a pde is linear if it is linear in U , Ux, Uy , Uxx, . . .. If the equation is not
linear, we say it is non-linear.

Example 1.5. Equations (1.2a), (1.2b), (1.2c) and (1.2d) are linear.

Example 1.6. The equation
Utt − Uxx + U2 = 0

is non-linear.

Example 1.7. The equation
Utt − Uxx = sin2 U

is non-linear.

A concept which will be important in our discussion is the following:

Definition 1.8. Given a pde operator L, an equation of the form

LU = 0

is said to be homogeneous. An equation of the form

LU = f,

with f 6= 0 a function is called inhomogeneous.
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Example 1.9. The equation

Uxx + Uyy = 2

is linear but inhomogenous.

Notation. For a 2-variable function u = u(x, y), we will denote by ∆u = uxx + uyy for
simplicity. This is a linear operator called the Laplace operator or Laplacian. The symbol
∆ is pronounced as “Delta”.

1.3. The principle of superposition. Some important observations which will be used
repeatedly are the following:

• If U1, U2, . . . , UN are solutions to LU = 0, a linear pde, then

U1 + · · ·+ UN

is also a solution. This observation is called the principle of superposition and is
a key property of linear pde’s. More about this later!

• If U solves the homogeneous linear equation LU = 0 and V solves the inhomo-
geneous linear equation LV = g then U +V solves the inhomogeneous equation.
This can be seen from

L(U + V ) = LU + LV = 0 + g = g.

Example 1.10. Some solutions to the homogeneous and inhomogenelus Laplace equations
in R2:

• U1(x, y) = x2 is a solution to the inhomogeneous PDE ∆U = 2
• U2(x, y) = x+ y is a solution to the homogeneous PDE ∆U = 0
• U3(x, y) = U1(x, y) +U2(x, y) = x2 + x+ y is a solution to the inhomogeneous

PDE ∆U = 2

Sometimes we have to specify in which domain does a solution solve a PDE (because
it may not holds for all the plane R2):

Example 1.11. U4(x, y) = ln
√
x2 + y2 solves the Laplace equation ∆U = 0 in R2 \

{(0, 0)}. (U4 is not defined for (x, y) = (0, 0)!)

Example 1.12. U(x, t) = 1√
4πt

e−
x2

4t is a solution to the heat equation Ut = Uxx.
To see this, we compute the 2nd partial derivatives with respect to x (using chain rule

and product rule)

Uxx(x, t) =

[
1√
4πt

e−
x2

4t · −x
2t

]
x

=
1√
4πt

e−
x2

4t · x
2

4t2
+

1√
4πt

e−
x2

4t · −1

2t
,

and the partial derivative with respect to t

Ut(x, t) =
1√
4πt

e−
x2

4t · x
2

4t2
+

1√
4π
e−

x2

4t · −
2

1

t
3
2

.

We check that 1√
4πt

e−
x2

4t · −12t = 1√
4π
e−

x2

4t · −2
1

t
3
2

and thus

Uxx = Ut

A final example that we give for solutions to the heat equation is constructed out of
known solutions by rescaling.
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Example 1.13. IfU(x, t) solves the equationUt = Uxx, then so does Ũ(x, t) = U(Cx,C2t)
for any C 6= 0. This can be seen as follows:

By chain rule

Ũt(x, t) =C2Ut(Cx,C
2t)

Ũxx(x, t) =C2Ux(Cx,C2t),

And thus if Ut = Uxx, we must also have

Ũt = Ũxx.

2. SOLVING SOME BASIC PDE’S

Start by looking at a very basic example, an ordinary differential equation (ode).

Example 2.1. Consider the ordinary differential equation for the function U = U(t)

dU

dt
= 0.

The solution is given by
U(t) = c

with c a constant.

Consider now a function U = U(x, y) of two variables.

Example 2.2. The solution of the pde

Ux =
∂U

∂x
= 0

is given (by integrating with respect to x) by

U(x, y) = f(y)

where f is a function of y only.

Note. Whereas ode’s have general solutions involving arbitrary constants, pde’s have gen-
eral solutions involving arbitrary functions of some of the coordinates.

Consider now an extension of the previous example:

Example 2.3. Let

Uxx =
∂2U

∂U2
= 0.

Integrating once with respect to x one finds that

Ux = f(y)

as in the previous example. Integrating once more one finds

U(x, y) = xf(y) + g(y)

with f , g arbitrary functions of y.

A more sophisticated example is:
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Example 2.4. Consider the equation

Uxy = 0.

Integrating once with respect to x one finds that

Uy = f(y).

Now, integrating with respect to y one has

U(x, y) = g(x) +

∫
f(y)dy.

where g is a function of x only. But
∫
f(y)dy is, in fact, a function of y so we can actually

write
U(x, y) = g(x) + F (y)

with F (x) ≡
∫
f(y)dy. We can readily check that the above is, indeed, a solution by direct

differentiation.

Note. Recall that if a function U(x, y) can be differentiated twice, then

∂2U

∂x∂y
=

∂2U

∂y∂x
,

or in terms of our new notation
Uxy = Uyx.

Example 2.5. Consider the equation

Uxx + U = 0.

It can be checked that the solution is given by

U(x, y) = f(y) cosx+ g(y) sinx.

The above equation should be compared with the ode

z′′ + z = 0.

Note. The above example shows that often it is useful to pretend that U(x, y) = U(x) and
then see what ode arises.

A similar example to the previous one is:

Example 2.6. Let
Ux = 2x sin y + exy.

Direct integration gives

U(x, y) = x2 sin y +
exy

y
+ f(y).

And finally two more examples which will be further elaborated during the course:

Example 2.7. One can readily verify by direct computation that

U(x, y) = sin(nx) sinh(ny)

solves
Uxx + Uyy = 0.
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Example 2.8. If f is a differentiable function of one variable and c 6= 0 is a constant, then

U(x, t) = f(x− ct)

satisfies the advection equation

Ut + cUx = 0.

For example, if f(z) = sin z then

f(x− ct) = sin(x− ct).

The assertion can be verified using the chain rule for ordinary derivatives.

Note. Recall that if f = f(x) and g = g(x) are two differentiable functions of x then the
derivative of the composition f ◦ g is given by

df ◦ g
dx

=
d

dx
f(g(x)) =

df(g(x))

dg

dg

dx
.

Let’s see next that the solutions of the form f(x− ct) actually make up all the possible
solutions to this advection equation.

3. SOLVING FIRST ORDER LINEAR PDES

In this section we discuss how to obtain the solutions of the partial differential equation

(3.1) aUx + bUy = 0,

with a, b 6= 0 some constants. This equation is a first order homogeneous equation. We
will analyse two methods to obtain the solution to this equation.

Before introducing the first method, we recall the chain rule for partial derivatives.

3.1. The chain rule for partial derivatives. An important tool in the analysis of pde’s
is the chain rule for partial derivatives. Given the usual coordinates (x, y) on R2 consider
new coordinates (x̃, ỹ) given by an expression of the form

x̃ = x̃(x, y), ỹ = ỹ(x, y).

That is, we assume that (x̃, ỹ) can be written as functions of the old coordinates (x, y). One
is then interested in the relation between the partial derivatives ∂/∂x, ∂/∂y and ∂/∂x̃,
∂/∂ỹ. This is given by the chain rule for partial derivatives which, in the language of
operators takes the form:

∂

∂x
=
∂x̃

∂x

∂

∂x̃
+
∂ỹ

∂x

∂

∂ỹ
,

∂

∂y
=
∂x̃

∂y

∂

∂x̃
+
∂ỹ

∂y

∂

∂ỹ
.

Note. Observe the pattern in the above seemingly complicated equations which helps to
remember the formulae.



WEEK 1 NOTES 7

3.2. Method 1: Solution by change of coordinates (analytic approach). A general ob-
servation which is often very useful is that a change of variables can turn a seemingly hard
problem into an easy one. We try this approach here.

In what follows we consider the change of variables given by

x̃(x, y) = ax+ by,

ỹ(x, y) = bx− ay.

We now express equation (3.1) in terms of the coordinates (x̃, ỹ). For this, we make use of
the chain rule. One has that

Ux =
∂U

∂x
=
∂x̃

∂x

∂U

∂x̃
+
∂ỹ

∂x

∂U

∂ỹ
= aUx̃ + bUỹ,

Uy =
∂U

∂y
=
∂x̃

∂y

∂U

∂x̃
+
∂ỹ

∂y

∂U

∂ỹ
= bUx̃ − aUỹ.

Substituting these expressions into the left hand side of equation (3.1) one has that

aUx + bUy = a(aUx̃ + bUỹ) + b(bUx̃ − aUỹ)

= (a2 + b2)Ux̃.

Thus, one concludes that in terms of the coordinates (x̃, ỹ), equation (3.1) takes the form

Ux̃ = 0.

We already know how to solve this equation. Namely one has that

U(x̃, ỹ) = f(ỹ),

where f is a function only of the coordinate ỹ. We can rewrite this expression in terms of
the coordinates (x, y) as

(3.2) U(x, y) = f(bx− ay).

That is, U(x, y) depends only on the combination bx−ay. The formula (3.2) is the general
solution of equation (3.1). Observe that it involves an arbitrary function.

Before we introduced the second method of solving the 1st order linear PDE, we need
to review some notions from calculus.

3.3. Gradient and directional derivatives. Given a function f = f(x, y) the gradient
∇f is the vector defined by

∇f ≡
(
∂f

∂x
,
∂f

∂y

)
= (fx, fy) .

Geometrically, f = f(x, y) can be thought of as a surface in R3 where the z coordinate
is given by the function f . At a given point (x, y), the gradient gives the direction of
maximum growth (steepest slope) of f .

Now, given a vector ~v = (v1, v2) on R2, the directional derivative ∇~vf of the function
f = f(x, y) in the direction of f is defined by

∇~vf ≡ ~v · ∇f = v1fx + v2fy,

where · denotes the inner product (dot product). This derivative gives the change of f in
the direction of ~v.
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3.4. Method 2: Geometric approach. By taking a geometric approach, one can under-
stand where do the change of variables we used comes from.

The basic observation is the following:

aUx + bUy = (a, b) · (Ux, Uy)

= (a, b) · ∇U
= ∇~vU,

where ~v ≡ (a, b). Thus, equation (3.1) means geometrically that the function U is constant
in the direction of ~v.

Question 3.1. What curves have tangent given by the constant vector ~v = (a, b)?

The curves necessarily have to be lines! The lines have slope dy/dx = b/a so that their
equation is of the form

y =
b

a
x+ c, c a constant.

The last expression can be rewritten as

(3.3) bx− ay = c.

From the previous discussion it follows that the solution is constant along these lines —we
call these lines characteristic lines. Thus, the function U(x, y) depends on the value of c
only and one can write

U(x, y) = f(c) = f(bx− ay)

Observe that the result we have obtained coincides with what we had using the method 1
(analytic approach).


