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Question 1 [25 marks].
Suppose that we have data y = (y1, . . . ,yn). Each data-point yi is assumed to be generated by a 

distribution with the following probability density function:

p(yi | η) = κ ηyκ−1
i e−ηy

κ
i , yi ≥ 0.

The unknown parameter is η, with κ assumed to be known, and η, κ > 0.

(a) Write down the likelihood for η given y. Find an expression for the maximum 

likelihood estimate (MLE) η̂. [6]

(b) A Gamma(α, β) distribution is chosen as the prior distribution for η. Show that the 

posterior distribution is also a gamma distribution with parameters that you should 

determine. [6]

(c) We would like to choose the gamma prior distribution parameters such that the prior 

mean is (B+10)/100, where B is the second-to-last digit of your ID number, and the 

prior coefficient of variation (standard deviation divided by the mean) is 0.5. Find the 

values of α and β that are needed. [4]

(d) The data are y = (2,7,5,3,C+1), where C is the last digit of your ID number, with
n = 5. Set κ = 2.

(i) What is the MLE η̂? [3]

(ii) Using the prior distribution from part (c), what are the parameters of the posterior 

distribution for η? [3]

(iii) What are the posterior mean and standard deviation for η? [3]

Question 2 [16 marks].
Suppose that the data y = (y1, . . . ,yn) are a sample from a normal distribution with unknown 

mean θ and known standard deviation σ = 2. Our prior distribution p(θ) is normal with mean 

0 and standard deviation σ0.

(a) For an uninformative prior, do we need a large or small value for σ0? [2]

(b) We want the prior probability P(|θ| ≤ A+10) to be 0.95, where A is the third-to-last digit 

of your ID number. What value for σ0 should we choose? [4]

(c) A colleague prefers a Cauchy distribution as a prior. What is a possible reason for this 

preference? [2]

Let the sample mean ȳ be B+1, where B is the second-to-last digit of your ID number, and the 

sample size be n = 20. Use the prior distribution found in part (b).

(d) What is the posterior distribution for θ, p(θ | y)? Based on this posterior distribution, 

find a point estimate for θ. [5]

(e) Suppose that we want to find the posterior probability P(θ ≤ 0 | y). Write an expression 

for this probability in terms of Φ, the cumulative distribution function for the standard 

normal distribution. [3]
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Question 3 [20 marks].
The data are y = (y1, . . . ,yn), a sample from a negative binomial distribution with parameters q
and r, where r is assumed to be known. A Beta(α, β) prior distribution is assigned to q. Apart 

from part (c), the answers do not need any numerical calculations.
In the following R code, the data y is denoted by y in the code, r is the known parameter, and
alpha and beta are the prior parameters. The posterior distribution for q is Beta(a,b).

r = 2

alpha = 4

beta = 4

a = r*length(y) + alpha

b = sum(y) + beta

qbeta(0.5, shape1=a, shape2=b)

qbeta(c(0.025, 0.975), shape1=a, shape2=b)

(a) In statistical terms, what will the second-to-last line of code output? [2]

(b) In statistical terms, what will the last line of code output? [3]

(c) Let B and C be the second-to-last and last digits of your ID number, respectively. Take 

the sample size n = B+10, and
∑n 

i=1 yi =C+20. What are the posterior mean and 

standard deviation for q? [6]

The R code below follows on from the code above.
q sim = rbeta(2000, shape1=a, shape2=b)

x = rnbinom(length(q sim), size=r, prob=q sim)

mean(x<3)

(d) When this code has run, what will q sim contain? What will x contain? [6]

(e) What quantity will the last line of code output (in statistical terms)? [3]

Question 4 [23 marks].
The observed data is y = (y1, . . . ,yn), a sample from a geometric distribution with parameter q. 

The prior distribution for q is uniform on the interval [0,1]. Suppose that y1 = · · · = yn = 0. 

Take n = 20+A, where A is the third-to-last digit of your ID number.

(a) What is the posterior probability density function for q? [4]

(b) Find an expression for the quantile function for this posterior distribution, and hence 

find the posterior median for q. [4]

(c) Let x be a new data-point generated by the same geometric distribution with parameter
q. Find P(x = 0 | y), the posterior predictive probability that x is 0. [6]

Suppose now that we want to compare two models. Model M1 is the model and prior 

distribution described above. Model M2 assumes that the data follow a geometric distribution 

with q known to be q0 = 0.9.

(d) Find the Bayes factor B12 for comparing the two models. [6]

(e) We assign prior probabilities of 1/2 that each model is the true model. Find the 

posterior probability that M2 is the true model. [3]
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Question 5 [16 marks].
We have observed data

y = {yi j : i = 1, . . . ,n, j = 1, . . . ,mi}.

Each yi j is the number of late trains observed out of Ni j journeys, for train operating company
i on route j, where j = 1, . . . ,mi are the routes operated by company i.
A hierarchical model is used to model the data. We assume that

yi j ∼ Binomial(Ni j,qi).

qi is the probability of being late for operating company i, which varies between companies 

according to a beta distribution

qi ∼ Beta(α, β), i = 1, . . . ,n.

The parameters α and β are given prior distributions, p(α) and p(β).
Suppose that we have generated a sample of size M from the joint posterior distribution
p(q1, . . . ,qn, α, β | y).

(a) Explain how to obtain a sample from the marginal posterior distribution p(α, β | y) using 

the joint posterior sample. [2]

(b) Given a sample from p(α, β | y), explain how to estimate the following:

(i) The posterior median of α.

(ii) The posterior median of µ =
α

α+β
.

(iii) A 95% equal tail credible interval for µ.
[6]

(c) Explain how to generate a sample from the posterior predictive distribution of the 

number of late trains out of K journeys for a route not in our dataset, in each of the 

following two cases:

(i) if the operating company for the route is in our dataset;

(ii) if the operating company is not in our dataset.
[8]

End of Paper – An appendix of 1 page follows.
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Appendix: common distributions
For each distribution, x is the random quantity and the other symbols are parameters.

Discrete distributions

Distribution Probability 

mass function 

Range of parameters 

and variates 

Mean Variance 

Binomial
(
n 

x

)
qx(1−q)n−x 0 ≤ q ≤ 1

x = 0,1, . . . ,n 

nq nq(1−q) 

Poisson
λxe−λ

x!
λ > 0
x = 0,1,2, . . . λ λ

Geometric q(1−q)x 0 < q ≤ 1
x = 0,1,2, . . .

(1−q)
q

(1−q)
q2

Negative 

binomial

(
r+ x−1

x

)
qr(1−q)x 0 < q ≤ 1, r > 0

x = 0,1,2, . . .
r(1−q)

q 

r(1−q)
q2

Continuous distributions

Distribution Probability 

density function 

Range of parameters 

and variates 

Mean Variance 

Uniform 

1
b−a

−∞ < a < b <∞
a < x < b 

a+b
2 

(b−a)2

12 

Normal N(µ, σ2) 

1
√

2πσ2
exp

(
−

(x−µ)2

2σ2

)
−∞ < µ <∞, σ > 0
−∞ < x <∞ µ σ2

The 95th and 97.5th percentiles of the standard N(0,1) distribution are 1.64 and 1.96, respectively. 

Exponential λe−λx λ > 0
x > 0 

1
λ

1
λ2

Gamma
βαxα−1e−βx

Γ(α)
α > 0, β > 0
x > 0

α

β 

α

β2

Beta
Γ(α+β)
Γ(α)Γ(β)

xα−1(1− x)β−1 α > 0, β > 0 

0 < x < 1
α

α+β 

αβ

(α+β)2(α+β+1)

End of Appendix.
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