MTH6140 Linear Algebra II

Coursework 9

1. (a) What is the characteristic polynomial of the matrix A of Question 3 of the previous sheet? The matrix is repeated here for convenience:

$$
A=\left[\begin{array}{ccc}
0 & -1 & -1 \\
2 & 3 & 1 \\
4 & 2 & 4
\end{array}\right]
$$

By trial and error (as described at the end of Section 5.5 of the notes) determine the minimal polynomial of A. Verify that the minimal polynomial is indeed a product of distinct linear factors, as asserted by Theorem 5.20.
(b) Repeat part (a) but with the matrix

$$
B=\left[\begin{array}{ccc}
2 & -1 & 0 \\
2 & 3 & 1 \\
0 & 2 & 2
\end{array}\right]
$$

That is, find the characteristic and minimal polynomials of B. Is B diagonalisable?
2. Suppose the linear map α on $\left(\mathbb{F}_{2}\right)^{n}$ is diagonalisable. What are the possible minimal polynomials of α ? (There are not very many!) Deduce that α is a projection.
3. Suppose that linear map α over \mathbb{C}^{n} is represented by $n \times n$ matrix A in Jordan form. Describe the matrix representing α^{2}. (Try this with a 3×3 block first, then generalise.)
4. Suppose A and B are real $n \times n$ matrices. Which of the following are true in general and which false?
(a) $\operatorname{Tr}(A B)=\operatorname{Tr}(A) \operatorname{Tr}(B)$.
(b) $\operatorname{Tr}(A+B)=\operatorname{Tr}(A)+\operatorname{Tr}(B)$.
(c) $\operatorname{Tr}\left(A^{-1}\right)=\operatorname{Tr}(A)^{-1}$.

In each case, either justify the claim or provide a counterexample.
5. Suppose that some linear map on \mathbb{R}^{3} is represented by the matrix

$$
A=\left[\begin{array}{ccc}
0 & 5 & -3 \\
1 & -2 & 1 \\
1 & -5 & 4
\end{array}\right]
$$

(a) Compute the determinant $\operatorname{det}(A)$ and the trace $\operatorname{Tr}(A)$ of A.
(b) Compute the characteristic polynomial $p_{A}(x)$ of A and verify that that the coefficient of x^{2} in $p_{A}(x)$ is $-\operatorname{Tr}(A)$, and that the constant coefficient in $p_{A}(x)$ is $(-1)^{3} \operatorname{det}(A)$. (Compare this finding with Proposition 5.28.)
(c) Recall that the eigenvalues of A are the roots of $p_{A}(x)$. Verify that the product of the eigenvalues of A is $\operatorname{det}(A)$ and that the sum of the eigenvalues is $\operatorname{Tr}(A)$. (Again, compare this finding with Proposition 5.28.)
6. Harder. Suppose that π is a projection on a vector space V over \mathbb{R} (or indeed over any field of characteristic 0$)$. Prove that $\operatorname{Tr}(\pi)=\operatorname{dim}(\operatorname{Im}(\pi))$.
7. Let V_{n} be the vector space of real polynomials of degree at most $n-1$. If $p(x)$ and $q(x)$ are polynomials in V_{n}, define $p \cdot q$ by

$$
p \cdot q=\int_{0}^{1} p(x) q(x) d x .
$$

Check that "." is an inner product on V_{n}.

