MTH6140 Linear Algebra II

Coursework 8

1. Let V_{n} and D be as in Question 6 of Assignment 6 . So V_{n} is the vector space of real polynomials of degree at most $n-1$, and D is the linear map on V_{n} mapping each polynomial to its derivative.
(a) Let $n=4$. What are the eigenvalues and associated eigenvectors of D as a map from V_{4} to itself? (So, we are asking: what are the possible polynomials f, of degree at most 3 , such that $f^{\prime}(x)=\lambda f(x)$ for some $\lambda \in \mathbb{R}$?) As in Assignment 6 , write down a general polynomial of degree at most 3 and see what constraints the coefficients must satisfy.
(b) Now let \widehat{D} be the map on the vector space of real polynomials that maps each polynomial $f(x)$ to $x f^{\prime}(x)$. What are the eigenvalues and associated eigenvectors of \widehat{D} as a map from V_{4} to itself? (Again, we are asking: what are the possible polynomials f, of degree at most 3 , such that $x f^{\prime}(x)=\lambda f(x)$ for some $\lambda \in \mathbb{R}$?)
(c) Which of the linear maps D and \widehat{D} are diagonalisable? In cases where the map is diagonalisable, write down a basis composed of eigenvectors, and the matrix representing the map relative to that basis.
2. The linear map $\alpha: V \rightarrow V$ satisfies (i) α is a projection, and (ii) α is invertible. Determine α.
3. If you successfully completed Question 6 of the previous assignment, you will have calculated eigenvectors of the following real matrix:

$$
A=\left[\begin{array}{ccc}
0 & -1 & -1 \\
2 & 3 & 1 \\
4 & 2 & 4
\end{array}\right]
$$

If not, a possible solution is: eigenvectors $v_{1}=\left[\begin{array}{ccc}1 & 0 & -2\end{array}\right]^{\top}$ and $v_{2}=$ $\left[\begin{array}{lll}0 & 1 & -1\end{array}\right]^{\top}$ with eigenvalue $\lambda_{1}=2$, and $v_{3}=\left[\begin{array}{lll}-1 & 1 & 2\end{array}\right]^{\top}$ with eigenvalue
$\lambda_{2}=3$.
(a) Find matrices P and $Q=P^{-1}$ such that $Q A P$ is the diagonal matrix

$$
D=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

(Recall that the columns of P can be taken to be eigenvectors of A, in the correct order.)
(b) Note that $A=P D P^{-1}$. What is the limit of the sequence of matrices $3^{-t} A^{t}$ as $t \rightarrow \infty$?
4. True or false?
(a) Let A be an $n \times n$ matrix with real entries. If A is diagonalisable viewed as a linear map on \mathbb{C}^{n} then it is diagonalisable viewed as a linear map on \mathbb{R}^{n}.
(b) If A is diagonalisable viewed as a linear map on \mathbb{R}^{n} then it is diagonalisable viewed as a linear map on \mathbb{C}^{n}.
(c) If A has n distinct real eigenvalues then it is diagonalisable viewed as a linear map on \mathbb{R}^{n}.

In each case, either justify the claim or provide a counterexample. Theorem 5.20 may be useful.
5. Suppse α is a linear map on \mathbb{R}^{2}. For each of (a)-(c), write down a 2×2 matrix A such that the linear map α represented by A has minimal polynomial $m_{\alpha}(x)$, where
(a) $m_{\alpha}(x)=x-1$,
(b) $m_{\alpha}(x)=(x-1)^{2}$,
(c) $m_{\alpha}(x)=x^{2}-2 x+2$.

