MTH6140 Linear Algebra II

Coursework 8

- 1. Let V_n and D be as in Question 6 of Assignment 6. So V_n is the vector space of real polynomials of degree at most n-1, and D is the linear map on V_n mapping each polynomial to its derivative.
 - (a) Let n=4. What are the eigenvalues and associated eigenvectors of D as a map from V_4 to itself? (So, we are asking: what are the possible polynomials f, of degree at most 3, such that $f'(x) = \lambda f(x)$ for some $\lambda \in \mathbb{R}$?) As in Assignment 6, write down a general polynomial of degree at most 3 and see what constraints the coefficients must satisfy.
 - (b) Now let \widehat{D} be the map on the vector space of real polynomials that maps each polynomial f(x) to xf'(x). What are the eigenvalues and associated eigenvectors of \widehat{D} as a map from V_4 to itself? (Again, we are asking: what are the possible polynomials f, of degree at most 3, such that $xf'(x) = \lambda f(x)$ for some $\lambda \in \mathbb{R}$?)
 - (c) Which of the linear maps D and \widehat{D} are diagonalisable? In cases where the map is diagonalisable, write down a basis composed of eigenvectors, and the matrix representing the map relative to that basis.
- **2.** The linear map $\alpha:V\to V$ satisfies (i) α is a projection, and (ii) α is invertible. Determine α .

3. If you successfully completed Question 6 of the previous assignment, you will have calculated eigenvectors of the following real matrix:

$$A = \begin{bmatrix} 0 & -1 & -1 \\ 2 & 3 & 1 \\ 4 & 2 & 4 \end{bmatrix}.$$

If not, a possible solution is: eigenvectors $v_1 = \begin{bmatrix} 1 & 0 & -2 \end{bmatrix}^{\top}$ and $v_2 = \begin{bmatrix} 0 & 1 & -1 \end{bmatrix}^{\top}$ with eigenvalue $\lambda_1 = 2$, and $v_3 = \begin{bmatrix} -1 & 1 & 2 \end{bmatrix}^{\top}$ with eigenvalue $\lambda_2 = 3$.

(a) Find matrices P and $Q = P^{-1}$ such that QAP is the diagonal matrix

$$D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

(Recall that the columns of P can be taken to be eigenvectors of A, in the correct order.)

- (b) Note that $A = PDP^{-1}$. What is the limit of the sequence of matrices $3^{-t}A^t$ as $t \to \infty$?
- **4.** True or false?
 - (a) Let A be an $n \times n$ matrix with real entries. If A is diagonalisable viewed as a linear map on \mathbb{C}^n then it is diagonalisable viewed as a linear map on \mathbb{R}^n .
 - (b) If A is diagonalisable viewed as a linear map on \mathbb{R}^n then it is diagonalisable viewed as a linear map on \mathbb{C}^n .
 - (c) If A has n distinct real eigenvalues then it is diagonalisable viewed as a linear map on \mathbb{R}^n .

In each case, either justify the claim or provide a counterexample. Theorem 5.20 may be useful.

5. Suppse α is a linear map on \mathbb{R}^2 . For each of (a)–(c), write down a 2×2 matrix A such that the linear map α represented by A has minimal polynomial $m_{\alpha}(x)$, where

2

- (a) $m_{\alpha}(x) = x 1$,
- (b) $m_{\alpha}(x) = (x-1)^2$,
- (c) $m_{\alpha}(x) = x^2 2x + 2$.