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Question 1 [20 marks].

(a) Define the terms algebraic integer and quadratic integer. State the
Fundamental Theorem of Arithmetic. [6]

(b) Determine which of the following numbers are quadratic integers. Explicitly
state any results from the lectures that you use. [4]

(i)
2 +
√

52
4

;

(ii)

√
43
2
− 7

2
.

(c) Show that
√

3 +
√

11 is an algebraic integer. [5]

(d) Find all integer solutions to the equation [5]

17x ≡ 4 (mod 71).

Question 2 [11 marks].

(a) Use the Euclidean algorithm to find a continued fraction expansion of
1723
505

. [4]

(b) Let a0, a1, . . . , an be positive integers. Let ck = pk/qk be the kth convergent of the
continued fraction [a0; a1, . . . , an].

(i) Prove for each 1 6 k 6 n that [2]

pk
pk−1

= ak +
pk−1

pk−2
.

(ii) Use part (i) to prove that for each 1 6 k 6 n [5]

pk
pk−1

= [ak; ak−1, . . . , a1, a0].
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Question 3 [15 marks].

(a) Find the continued fraction expansion of
1 +
√

37
2

. [6]

(b) You are given that √
53 = [7; 3, 1, 1, 3, 14].

Find all solutions in positive integers x, y to the following equation

x2 − 53y2 = −1.

Explain why you have found ALL solutions. [9]

Question 4 [19 marks].

(a) Given a positive integer n define the order of x (mod n). State Euler’s Theorem. [4]

(b) Find the last two digits of 340845. Explain your working. [5]

(c) Let m and n be positive integers. Prove that φ(mn) 6 φ(m)φ(n). [5]

(d) Find a primitive root (mod 17). Explain why the integer you gave has the
desired properties. [5]

Question 5 [20 marks].

(a) Define the term quadratic non-residue. Define the Legendre symbol
(

a
p

)
.

State the Law of Quadratic Reciprocity. [6]

(b) Calculate the value of
(

99
101

)
. You should clearly state any rules you use for

calculating the Legendre symbol. [6]

(c) State and prove Euler’s Criterion. [8]
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Question 6 [15 marks].

(a) For each of the equations, determine whether there exists a solution x, y in
positive integers. If a solution exists explain why. If no solution exists explain
why not. Explicitly state any results from the lectures that you use. [6]

(i) x2 + y2 = 5850;

(ii) x2 + y2 = 9450.

(b) Use Hensel’s Lemma to find all integer solutions to the equation [9]

x2 ≡ 3 (mod 112).

Explain your working.

End of Paper.
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