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Question 1 (a) Using the Euclidean algorithm or otherwise, find the continued fraction

expansion of
127
24

. [5]

(b) Find the value of the periodic continued fraction [10;3,2,3]. [8]

(c) Find the value of the periodic continued fraction [5;3,2,3,10]. [2]

(d) Explain how to use the continued fraction for
√

n (where n is a positive integer which
is not a square) to find the solutions of the equations x2−ny2 =±1 in positive integers
(x,y). [4]

(e) Using your answers to parts (c) and (d), find the fundamental solution to the equation [4]

x2−28y2 =±1.

(f) Does the equation x2−28y2 =−1 have a solution in integers x, y? Explain! [2]

Question 2 (a) Find the continued fraction for
√

53. [10]

(b) Explain how to use the continued fraction for
√

p (where p is a prime congruent to 1
modulo 4) to find the solutions of the equations x2 +y2 = p in positive integers (x,y). [5]

(c) Using parts (a) and (b), find positive integers x and y such that x2 + y2 = 53. [5]

(d) Prove the following statement. If n is an integer congruent to 3 modulo 4, then the
equation x2 + y2 = n does not have a solution in integers x, y. [5]

Question 3 (a) What is an algebraic number? What is a transcendental number? [3]

(b) What is an algebraic integer? [2]

(c) Which of the following numbers are algebraic integers? Explain, stating precisely all
theorems you use!

(i)
√

3+ 3
√

2;

(ii)
3+
√

7
2

; [8]

(iii)
5+3

√
17

2
;

(iv)
5+7

√
13

3
.

(d) What do we mean by saying that an irrational number x is approximable by rationals
to order m? [3]

(e) Prove that every positive irrational is approximable by rationals to order 2. [4]

(f) Let

x =
∞

∑
i=1

1
2i! =

1
21! +

1
22! +

1
23! + · · · .

Is x algebraic? Prove your claim! [5]
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Question 4 In this question, p denotes an odd prime.

(a) Define a quadratic residue mod p. [2]

(b) Define the Legendre symbol
(

a
p

)
for any integer a. [3]

(c) State the Law of Quadratic Reciprocity. [3]

(d) Calculate the value of
(

21
53

)
. [6]

(e) Suppose that p can be represented as p = x2−3y2.

(i) Show that
(

x2

p

)
=

(
3y2

p

)
. [2]

(ii) Deduce, using quadratic reciprocity, that for such primes p we have [4]( p
3

)
= (−1)(p−1)/2.

(iii) Considering the cases p≡±1 (mod 4), deduce that p must be congruent to 1 or
11 modulo 12. [5]

Question 5 (a) What is the discriminant of the quadratic form f (x,y) = ax2 +bxy+ cy2

over the integers? [1]

(b) Define the following terms for binary quadratic forms:

(i) positive definite;

(ii) negative definite;

(iii) indefinite;

(iv) degenerate.

For each case, give a test for recognising whether these properties hold, in terms of
the coefficients of the form. [8]

(c) In each of the following cases, state whether the quadratic form is positive definite,
negative definite, indefinite, or degenerate:

(i) −3x2 +7xy+2y2,

(ii) x2−2xy+6y2, [3]

(iii) x2−2xy+1.

(d) What is meant by saying that a positive definite binary quadratic form is reduced? [2]

(e) What is meant by saying that two binary quadratic forms are equivalent? When are
two reduced quadratic forms equivalent? [4]

(f) Show that the quadratic forms 6x2−2xy+y2 and 7x2−22xy+18y2 are not equivalent. [7]
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Question 6 (a) Prove that there are infinitely many prime numbers congruent to 3 (mod 4). [5]

(b) Use part (a) to deduce that there exist infinitely many primes which are not congruent
to 1 modulo 8. [2]

(c) State the values of Legendre symbols
(
−1
p

)
and

(
2
p

)
. [4]

(d) Let x be an even integer. Show that every prime divisor p of x4 +1 satisfies(
−1
p

)
=

(
2
p

)
= 1

and that this implies p≡ 1 (mod 8). [Hint: Observe that x4 +1 = (x2 +1)2−2x2.] [8]

(e) Let q1, . . . ,qn be prime numbers congruent to 1 (mod 8). By the preceding part it
follows that that any prime divisor of (2q1 · · ·qn)

4+1 is congruent to 1 (mod 8). Using
this fact, show that there are infinitely many prime numbers congruent to 1 (mod 8). [6]

End of Paper
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