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Question 1 (a) Use the Euclidean algorithm to find the greatest common divisor of 263
and 108. [4]

(b) Use your working to find x and y satisfying 263x+108y = 1. [4]

(c) Use your working to find a continued fraction expansion of
263
108

. [4]

(d) Write down a different continued fraction expansion of
263
108

, explaining what this
means. [3]

(e) Suppose that x′ and y′ are any integers satisfying 263x′+108y′ = 1. Show that
263(x′−x) = 108(y−y′), where x and y are the numbers you cound in part (b). Hence
show that x′ = x+108t, y′ = y−263t for some integer t. [6]

(f) Hence find x′ and y′, different from the x and y you found in part (b), satisfying
263x′+108y′ = 1. [4]

Question 2 (a) Define Euler’s square bracket function, and explain its connection with
continued fractions. [5]

(b) Which real numbers have

(i) finite continued fractions;

(ii) periodic continued fractions;

(iii) purely periodic continued fractions?

(Proofs not required.) [6]

(c) Explain how to use the continued fraction for
√

n (where n is a positive integer which
is not a square) to find the solutions of the equations x2−ny2 =±1 in positive integers
(x,y). [5]

(d) Given that √
29 = [5;2,1,1,2,10],

find the smallest solution of x2−29y2 = 1 in positive integers. [9]

Question 3 (a) State the Chinese Remainder Theorem. [3]

(b) Define Euler’s totient function φ(n). [2]

(c) Use the Chinese Remainder Theorem to show that, if gcd(m,n) = 1, then φ(mn) =
φ(m)φ(n). [5]

(d) If p is prime and a≥ 1, what is the value of φ(pa)? Prove your assertion. [6]

(e) Prove that, if gcd(a,n) = 1, then aφ(n) ≡ 1 (mod n). [6]

(f) Show that a2 ≡ 1 (mod 8) for any odd number a. [3]
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Question 4 In this question, p denotes an odd prime.

(a) Define a quadratic residue mod p. [3]

(b) Define the Legendre symbol
(

a
p

)
for any integer a. [4]

(c) State the Law of Quadratic Reciprocity. [3]

(d) Calculate the following Legendre symbols:

(i)
(

60
43

)
, (ii)

(
−3
43

)
.

You should state clearly any rules for computing Legendre symbols that you use, but
are not required to prove them. [6]

(e) Suppose that p = x2 + y2 for some integers x and y. Show that(
x2

p

)
=

(
−y2

p

)
,

and deduce that
(
−1
p

)
= 1. [5]

(f) Is it true that any odd prime p satisfying
(
−1
p

)
= 1 is a sum of two squares of

integers? (Give brief reasons; detailed proof not required.) [4]

Question 5 (a) What is a quadratic form in variables x,y over the integers? [2]

(b) Define the terms positive definite, negative definite, and indefinite for quadratic forms.
Give tests for recognising whether these properties hold, in terms of the coefficients
of the form. [6]

(c) In each of the following cases, state whether the quadratic form is positive definite,
negative definite, indefinite, or none of these:

(i) x2 +4xy+5y2, (ii) 9x2−24xy+16y2.

[4]

(d) What is meant by saying that a positive definite quadratic form is reduced? What is
meant by saying that two quadratic forms are equivalent? [4]

(e) Show that the quadratic forms x2 + y2 and x2 +4xy+5y2 are equivalent. [3]

(f) Hence give a description, in terms of their prime factors, of the integers represented
by the quadratic form x2 +4xy+5y2. Explain briefly why your description is correct;
a detailed proof is not required. [6]
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Question 6 (a) Prove that any prime greater than 3 is congruent to 1 or 5 (mod 6). [2]

(b) Prove that there are infinitely many prime numbers congruent to 5 (mod 6). [5]

(c) Show that
(
−3
p

)
= +1 if and only if p ≡ 1 (mod 6). [Hint: You may want to

consider the possible congruence class of p (mod 12).] [8]

(d) Let q1, . . . ,qn be prime numbers congruent to 1 (mod 6). Use the result of the preced-
ing part to show that any prime divisor of (2q1 · · ·qn)2 +3 is congruent to 1 (mod 6). [7]

(e) Hence show that there are infinitely many prime numbers congruent to 1 (mod 6). [3]

End of Paper
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