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Question 1 (a) State the Chinese Remainder Theorem. [4]

(b) Find the general solution of the simultaneous congruences

x≡ 3 (mod 7), x≡ 1 (mod 11). [4]

(c) State and prove Fermat’s Little Theorem. [9]

(d) Use Fermat’s Little Theorem to prove that, for any integer n,

n37 ≡ n (mod 13) and n37 ≡ n (mod 19). [4]

(e) Deduce that, for any integer n,

n37 ≡ n (mod 741). [4]

Question 2 (a) Use Euclid’s Algorithm to find gcd(321,210). [4]

(b) Find integers x,y satisfying 321x+210y = d, where d = gcd(321,210). [4]

(c) Does the equation 321x + 210y = 17 have a solution in integers x,y? If so, find one;
if not, explain why not. [4]

(d) State, without proof, a necessary and sufficient condition, in terms of the integers
a,b,c, for the equation ax+by = c to have a solution in integers x,y. [5]

(e) What is a finite continued fraction? [4]

(f) Find a continued fraction for
321
210

. [4]

Question 3 (a) Let a0,a1, . . . be positive integers. Explain carefully what is meant by the
value of the infinite continued fraction [a0;a1,a2, . . .]. State which numbers can be the
value of such a continued fraction. [5]

(b) State which numbers can be the value of a periodic continued fraction

[a0;a1, . . . ,al−1,al, . . . ,al+k−1],

explaining the notation. [4]

(c) Find the value of the continued fraction [1;8], explaining your calculations. [8]

(d) Find a continued fraction whose value is 2
√

2−1, explaining your calculations. [8]

Question 4 You are given that
√

31 = [5;1,1,3,5,3,1,1,10].

For each of the following equations, say whether it has a solution in positive integers x,y or
not. If there is a solution, you should find one; if not, you should explain why not.

(a) 31 = x2 + y2; [7]

(b) x2−31y2 =−1; [9]

(c) x2−31y2 = 1. [9]

You should state carefully any theorems you use about the solutions to equations of these
types.
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Question 5 (a) What is a primitive root in Zp (the integers mod p), where p is prime? [3]

(b) How many primitive roots are there in Z181? [5]

(c) Show that 2 is a primitive root in Z19. [5]

(d) Find the orders of all the elements of Z19, explaining your method. [6]

(e) Show that a non-zero element of Zp is a quadratic residue if and only if it is an even
power of a primitive root. Hence find the quadratic residues in Z19. [6]

Question 6 (a) Define the Legendre symbol
(

a
p

)
, where a is an integer and p is an odd

prime. [3]

(b) Prove that (
a
p

)
≡ a(p−1)/2 (mod p),

and deduce that
(

ab
p

)
=

(
a
p

)(
b
p

)
. [4]

(c) State the values of
(
−1
p

)
and

(
2
p

)
. [4]

(d) State the Law of Quadratic Reciprocity. [4]

(e) Calculate the value of
(

43
71

)
. [5]

(f) Prove that, if p is a prime greater than 3, then(
3
p

)
=

{
+1 if p≡±1 (mod 12),
−1 if p≡±5 (mod 12).

[5]

Question 7 (a) What does it mean to say that the quadratic form Q(x,y)= ax2 +bxy+cy2

is (i) positive definite, (ii) negative definite, (iii) indefinite? [6]

(b) True or false? Every quadratic form is of one of the above types. Give reasons for
your answer. [3]

(c) For each of the following quadratic forms, determine if it is positive definite, negative
definite, or indefinite:

(i) x2−2xy, (ii) x2 + xy+ y2, (iii) x2−2xy+ y2. [6]

(d) What does it mean to say that two quadratic forms are equivalent? [3]

(e) What does it mean to say that a positive definite quadratic form is reduced? How
many reduced quadratic forms are equivalent to a given positive definite form? [3]

(f) Find a reduced quadratic form equivalent to the form 2x2 + y2. [4]
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