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Question 1 (a) Use the Euclidean algorithm to find the greatest common divisor of 167
and 59, and to express it in the form 167x+59y for integers x and y. [5]

(b) What is meant by a finite continued fraction [a0;a1,a2, . . . ,an]? [3]

(c) Find a continued fraction whose value is
167
59

. [5]

(d) Given two integers a and b, show that an integer n can be written in the form ax +by
for some x,y ∈ Z if and only if n is divisible by gcd(a,b), and describe how to find
the general solution of this equation in integers x,y. [7]

(e) Find all solutions of 167x+59y = 5. [5]

Question 2 (a) What is meant by an infinite continued fraction [a0;a1,a2, . . .], where a0
is an integer and a1,a2, . . . are positive integers? [4]

(b) State without proof which numbers can be represented by

(i) a finite continued fraction,
(ii) an infinite continued fraction.

Are the representations unique? [4]

(c) Prove that a number which is represented by a purely periodic continued fraction is a
quadratic irrational. (You should define these terms.) [7]

(d) Find a continued fraction representation for
√

5. [5]

(e) Find the numbers represented by the continued fractions [1;1,2] and [1;1,1,2]. [5]

Question 3 (a) What is meant by a best rational approximation p/q to an irrational num-
ber y? [3]

(b) State without proof a theorem relating the best rational approximations to y to the
convergents to the continued fraction for y. [4]

(c) Given that
√

2 = [1;2], show that the sequence of best rational approximations pn/qn

to
√

2 is given by the pair of recurrence relations

p0 = q0 = 1, p1 = 3, q1 = 2,

pn+1 = 2pn + pn−1, qn+1 = 2qn +qn−1 for n≥ 1.

[5]

(d) Prove (by induction or otherwise) that, with pn, qn as in part (c),

pn+1 = pn +2qn, qn+1 = pn +qn.

[5]

(e) State a theorem describing the solutions in positive integers to the equation x2−ny2 =
±1 in terms of the convergents to

√
n. Hence describe all solutions in positive integers

to x2−2y2 =±1, explaining which solutions correspond to each choice of sign. [8]
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Question 4 (a) What is a quadratic residue modulo an odd prime p? Define the Legendre

symbol
(

a
p

)
. [3]

(b) State the value of
(
−1
p

)
. [3]

(c) State the Law of Quadratic Reciprocity. [3]

(d) Use the Law of Quadratic Reciprocity to show that, if p is a prime with p≥ 5, then(
−3
p

)
=

{
+1 if p≡ 1 mod 3,
−1 if p≡−1 mod 3

.

(Other rules for computing the Legendre symbol may be used without proof provided
they are stated clearly.) [8]

(e) Suppose that p1, . . . , pr are primes congruent to 1 mod 3. Let x = 2p1 · · · pr, and
N = x2 +3. Show that N has a prime divisor congruent to 1 mod 3. [4]

(f) Hence show that there are infinitely many primes congruent to 1 mod 3. [4]

Question 5 (a) Define Euler’s totient function φ(n) for positive integers n. [3]

(b) Show that [6]

∑
d|n

φ(d) = n.

(c) Show that, if n = pa1
1 pa2

2 · · · par
r , where p1, . . . , pr are distinct primes and a1, . . . ,ar are

positive integers, then

φ(n) = pa1−1
1 (p1−1)pa2−1

2 (p2−1) · · · par−1
r (pr−1).

[5]

(d) Prove that φ(n) is even for all integers n > 2. [5]

(e) Find all positive integers n such that φ(n) = 4. [6]

Question 6 (a) State a theorem on the representation of prime numbers as sums of two
squares. [4]

(b) Deduce that the positive integer n is a sum of two squares if and only if the squarefree
part of n has no prime divisors congruent to −1 mod 4. You may use any results you
require about quadratic residues, but should state them clearly. [11]

(c) Find all expressions for 130 as the sum of two squares. [4]

(d) State which positive integers can be represented as

(i) sums of three squares,
(ii) sums of four squares.

[6]
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Question 7 (a) What is a quadratic form in two variables x and yi over the integers?
What is its discriminant? [3]

(b) What is meant by saying that a quadratic form is

(i) positive definite,

(ii) negative definite,

(iii) indefinite?

Give conditions for each of these properties in terms of the coefficients and the dis-
criminant of the form. [4]

(c) For each of the following quadratic forms, say whether it is positive definite, negative
definite or indefinite:

(i) x2 +2xy− y2,

(ii) x2−3xy+3y2.

[4]

(d) What is meant by saying that a positive definite quadratic form is reduced? [3]

(e) Find a reduced quadratic form equivalent to each of the forms in part (c) which you
found to be positive definite. [4]

(f) Find all reduced positive definite quadratic forms with discriminant −8. [7]

End of Paper
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