MTH5112 Linear Algebra I MTH5212 Applied Linear Algebra (2023/2024)

 COURSEWORK 9

 COURSEWORK 9}

WebWork submission of exercise marked (*) due: 11.59am on Monday 20 December 2023

You should also attempt all of the other exercises in order develop your mathematical reasoning and skill in constructing arguments and proofs; model solutions will be posted on QMPlus after the submission date.

Exercise (*) 1. Solve WeBWork Set 9 at:

https://webwork.qmul.ac.uk/webwork2/MTH5112-2023.
Log in with your 'ah***' QMUL ID as username, and your student number as password, see Coursework 0 for further instructions.

Exercise 2. (a) Prove that for all vectors $\mathbf{x}, \mathbf{y} \in \mathbf{R}^{n}$, we have

$$
\begin{equation*}
\|\mathbf{x}+\mathbf{y}\|^{2}=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}+2(\mathbf{x} \cdot \mathbf{y}) \tag{1}
\end{equation*}
$$

and use this to deduce the Pythagorean Theorem in \mathbb{R}^{n} (Proposition 7.8 from lectures), i.e. that vectors $\mathbf{x}, \mathbf{y} \in \mathbf{R}^{n}$ are orthogonal if and only if

$$
\|\mathbf{x}+\mathbf{y}\|^{2}=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2} .
$$

(b) Use equation (1) to prove the Cauchy-Schwartz inequality, which says that

$$
|\mathbf{u} \cdot \mathbf{v}| \leq\|\mathbf{u}\| \cdot\|\mathbf{v}\|
$$

for all vectors $\mathbf{u}, \mathbf{v} \in \mathbf{R}^{n}$. Hint: let $\mathbf{x}=\|\mathbf{u}\| \mathbf{v}$ and $\mathbf{y}=-\|\mathbf{v}\| \mathbf{u}$ in (1), and note that both sides of (1) are non-negative.
(c) Use equation (1) and the Cauchy-Schwartz inequality to prove the triangle inequality, which says that

$$
\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|
$$

for all vectors $\mathbf{u}, \mathbf{v} \in \mathbf{R}^{n}$. Hint: start by expanding $\|\mathbf{u}+\mathbf{v}\|^{2}$ using (1).
Exercise 3. Let H be a subspace of \mathbb{R}^{n}. Prove the following:
(a) H^{\perp} is also a subspace of \mathbb{R}^{n}.
(b) If $H=\operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right)$ then a vector $\mathbf{x} \in \mathbb{R}^{n}$ is an element of H^{\perp} if and only if \mathbf{x} is orthogonal to each of the spanning vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$.
(c) $\operatorname{dim}(H)+\operatorname{dim}\left(H^{\perp}\right)=n$. Hint: choose a basis for H and think of a way to use the rank-nullity theorem.
Exercise 4. Let H be the subspace of \mathbb{R}^{3} spanned by the two vectors

$$
\mathbf{u}=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right), \quad \mathbf{v}=\left(\begin{array}{c}
0 \\
1 \\
-3
\end{array}\right)
$$

(a) Find a basis of H^{\perp}. (Hint: notice that H^{\perp} is the nullspace of a certain 2×3 matrix.)
(b) Give geometric descriptions of H and H^{\perp}.

Exercise 5. Consider the following vectors in \mathbb{R}^{3} :

$$
\mathbf{v}_{1}=\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{c}
-4 \\
-2 \\
4
\end{array}\right), \quad \mathbf{v}_{3}=\left(\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right)
$$

(a) Show that $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is an orthogonal basis for \mathbf{R}^{3}.
(b) Find the coordinate vectors of the the following vectors in the basis B :

$$
\mathbf{u}=\left(\begin{array}{c}
-1 \\
5 \\
3
\end{array}\right), \quad \mathbf{w}=\left(\begin{array}{c}
6 \\
-2 \\
2
\end{array}\right)
$$

Hint: do not solve any linear systems or compute the inverses of any matrices; instead, use the fact that B is an orthogonal basis and apply an appropriate theorem from Chapter 6 of the lecture notes.

