ECOM181 Macroeconomics for Policy

2022/23 Semester 1

Joep Lustenhouwer

Previous topic: 2001 tax rebates to households

$$C_{i,t+1} - C_{i,t} = \sum_{s} \beta_{0s} * month_{s,i}$$

$$+ \beta'_{1} \mathbf{X}_{i,t} + \beta_{2} R_{i,t+1} + u_{i,t+1},$$

- Regress change in consumption on
 - Time dummies and other controls
 - And a measure of rebates (amount of rebates or indicator that is 1 when household had rebates)

Previous topic: Households' responses to tax rebate

TABLE 2—THE CONTEMPORANEOUS RESPONSE OF EXPENDITURES TO THE TAX REBATE

		Panel A. Dep	endent variable: d	ollar change in	expenditures on:	
	Food	Strictly nondurable goods	Nondurable goods	Food	Strictly nondurable goods	Nondurable goods
Estimation method	OLS	OLS	OLS	OLS	OLS	OLS
Rebate	0.109 (0.056)	0.239 (0.115)	0.373 (0.135)			
I(Rebate > 0)				51.5 (27.6)	96.2 (53.6)	178.8 (65.0)
Age	0.570 (0.320)	0.449 (0.550)	1.165 (0.673)	0.552 (0.318)	0.391 (0.548)	1.106 (0.670)
Change in adults	130.3 (57.8)	285.8 (90.0)	415.8 (102.8)	131.1 (57.8)	287.7 (90.2)	418.6 (102.9)
Change in children	73.7 (45.3)	98.3 (82.4)	178.4 (98.3)	74.0 (45.3)	98.7 (82.5)	179.2 (98.3)
RMSE	934	1680	2047	934	1680	2047
R ² (percent)	0.6	0.6	0.6	0.6	0.6	0.6

Previous topic: Liquidity constraints?

	Dollar c	hange in:	Percent of	change in:	Dollar o	change in:
	Strictly nondurable goods	Nondurable goods	Strictly nondurable goods	Nondurable goods	Strictly nondurable goods	Nondurable goods
	Interact	ion: Age	Interactio	on: Income	Interaction:	Liquid Assets
		ge ≤ 39 ge ≥ 56		≤34,298 >69,000		≤1,000 >8,000
$Rebate_{t+1}$	0.249 (0.177)	0.363 (0.209)	0.050 (0.163)	0.129 (0.184)	-0.284 (0.177)	-0.243 (0.217)
Rebate _{t+1} * Low (Low group diff) Rebate _{t+1} * High (High group diff) Rebate _t Rebate _t * Low	-0.063 (0.210) -0.095 (0.264) -0.266 (0.142)	0.033 (0.238) 0.034 (0.304) -0.250 (0.167) 0.425	0.319 (0.224) 0.275 (0.251) -0.080 (0.148)	0.627 (0.266) 0.256 (0.291) -0.064 (0.172)	0.569 (0.239) 0.312 (0.299) 0.201 (0.226) -0.290	0.876 (0.284) 0.404 (0.364) 0.283 (0.261) -0.292
Rebate _t * Low (Low group diff) Rebate _t * High (High group diff)	0.271 (0.190) -0.042 (0.228)	(0.223) 0.010 (0.270)	-0.053 (0.198) -0.310 (0.235)	-0.067 (0.248) -0.246 (0.275)	(0.253) -0.659 (0.298)	-0.292 (0.302) -0.670 (0.358)
N	12,730	12,730	9,233	9,233	5,951	5,951

Plan for today: Investment

- Discuss questions about investment
- Bonus depreciation in the USA
- Capital allowances in the UK

Questions to discuss

- What are the main features of investment at the micro level?
- What drives the heterogeneity of investment responses to taxes and why?
- How would you assess the potential impact of tax incentives to promote investment and what is the difficulty of doing so based on past experiences?

Micro level investment

- User costs?
- Marginal q/ adjustment costs?
- Cash flows important
- Lumpy investment spikes

$$GK_{it} = \frac{i_{it} - \delta k_{it-1}}{0.5 \times (k_{it-1} + k_{it})}$$

Tax policy and heterogeneous investment behavior

Zwick, Eric and Mahon, James, 2017

American Economic Review, Vol. 107(1): 217-248

Bonus Depreciation of investment

Table 1—Regular and Bonus Depreciation Schedules for Five-Year Items

Year:	0	1	2	3	4	5	Total
Normal depreciation							
Deductions (000s)	200	320	192	115	115	58	1,000
Tax benefit ($\tau = 35$ percent)	70	112	67.2	40.3	40.3	20.2	350
Bonus depreciation (50 percent)							
Deductions (000s)	600	160	96	57.5	57.5	29	1,000
Tax benefit ($\tau = 35$ percent)	210	56	33.6	20.2	20.2	10	350

Present value of deductions

Present value of deductions

$$z^0 = D_0 + \sum_{t=1}^T \frac{1}{(1+r)^t} D_t$$

In case of bonus depreciation:

$$z = \theta + (1 - \theta)z^0.$$

- More long-lived investments benefit more from bonus depreciation
- Bonus depreciation first 0.3, then 0.5, then 0, then 0.5 then 1.

Graphical evidence

Panel A. Intensive margin: bonus I

Panel C. Extensive margin: bonus I

Panel B. Intensive margin: bonus II

Panel D. Extensive margin: bonus II

---- Treatment group (long duration industries)
---- Control group (short duration industries)

Regression evidence

	Intensive margin: LHS variable is log(investment)							
	(1)	(2)	(3)	(4)	(5)	(6)		
$z_{N,t}$	3.69 (0.53)	3.78 (0.57)	3.07 (0.69)	3.02 (0.81)	3.73 (0.70)	4.69 (0.62)		
$CF_{it}/K_{i,t-1}$		0.44 (0.016)						
Observations	735,341	580,422	514,035	221,306	585,914	722,262		
Clusters (firms)	128,001	100,883	109,678	63,699	107,985	124,962		
R^2	0.71	0.74	0.73	0.80	0.72	0.71		
	Ex	tensive marg	in: LHS varia	able is $log(P($	investment >	0))		
$z_{N,t}$	3.79	3.87	3.12	3.59	3.99	4.00		
	(1.24)	(1.21)	(2.00)	(1.14)	(1.69)	(1.13)		
$CF_{it}/K_{i,t-1}$		0.029 (0.0100)						
Observations	803,659	641,173	556,011	247,648	643,913	803,659		
Clusters (industries)	314	314	314	274	277	314		
R^2	0.87	0.88	0.88	0.93	0.90	0.90		

Financial frictions

$$\max_{\{i_t,k_{t+1}\}} \sum_{s=t}^{\infty} \left(\frac{1}{1+r}\right)^{s-t} \left[k_s^{\alpha} - i_s + \eta(i_s,k_s)\right]$$
 such that

$$k_{t+1} = k_t + i_t \quad (\delta = 0) \text{ and } \eta(i_s, k_s) = \begin{cases} \eta_1(k_s^{\alpha} - i_s) & \text{if } k_s^{\alpha} < i_s \\ 0 & \text{if } k_s^{\alpha} \ge i_s \end{cases}$$

Liquidity constraints?

Table 6—Heterogeneity by Ex Ante Constraints

	Sa	les	Div p	Div payer?		d cash
	Small	Big	No	Yes	Low	High
$z_{N,t}$	6.29 (1.21)	3.22 (0.76)	5.98 (0.88)	3.67 (0.97)	7.21 (1.38)	2.76 (0.88)
Equality test	p =	0.030	p =	0.079	p =	0.000
Observations	177,620	255,266	274,809	127,523	176,893	180,933
Clusters (firms)	29,618	29,637	39,195	12,543	45,824	48,936
R^2	0.44	0.76	0.69	0.80	0.81	0.76

Non-convex adjustment costs?

$$\max_{\{i_t, k_{t+1}\}} \sum_{s=t}^{\infty} \left(\frac{1}{1+r} \right)^{s-t} [k_s^{\alpha} - i_s - C(i_s)]$$

such that

$$k_{t+1} = k_t + i_t$$
 ($\delta = 0$) and $C(i_s) = \begin{cases} C \text{ if } i_s \neq 0 \\ 0 \text{ if } i_s = 0 \end{cases}$

Non-convex adjustment costs?

Table B.7: Heterogeneity by Predictors of Adjustment

		LHS Variable is Log(Eligible Investment)						
	Sales (Growth	A	ge	P(S _I	oike)	P(Ina	ctive)
	Low	High	Young	Old	Low	High	Low	High
$z_{N,t}$	5.24*** (0.93)	2.27* (1.09)	3.62*** (1.03)	4.56*** (0.69)	6.53*** (0.91)	4.27** (1.62)	3.33** (1.14)	6.22*** (1.43)
Test	p =	.038	p =	.435	p =	.039	p =	.010
Observations Firms R ²	167621 22659 0.65	162871 22653 0.70	133752 30503 0.70	254651 29525 0.73	131234 39723 0.82	131177 45391 0.80	136625 33434 0.77	126549 28504 0.57

The impact of investment incentives: Evidence from UK corporation tax returns

Maffini, Giorgia, Xing, Jing, Devereux, Michael P., 2019.

American Economic Journal: Economic Policy, Vol. 11(3): 361-389

Capital allowance in the UK

- Small and medium-sized firms had larger accelerated first-year capital allowances (→ deduct larger proportion of investment in plants and machinery from taxes in first year)
- But how small is medium-sized?
- The definition for this suddenly changed considerably in 2004
- Compare firms that used to be large and suddenly became 'medium sized' (treated firms) with firms that remained large throughout (control)

Capital allowance in the UK

Table 1—Rates of Capital Allowances for Plant and Machinery in First Year (Percent)

	Treated	Control	Always small	Always medium
2001–2002	25	25	40	40
2002-2003	25	25	40	40
2003-2004	25	25	40	40
2004-2005	40	25	50	40
2005-2006	40	25	40	40
2006-2007	40	25	50	40
2007-2008	40	25	50	40
2008-2009	20	20	20	20

Comparison before and after policy change

TABLE 5—GROSS INVESTMENT RATE

	Mean SD	Mean SD	<i>t</i> -test statistics	Pr(T < t)
Treatment group				
	Non-qualifying	Qualifying		
	years	years		
Investment rate	0.169 0.300	0.192 0.349	-2.258	0.012
Observations	1,812	2,718		
Control group				
	Before policy change	After policy change		
Investment rate	0.203 0.337	0.205 0.337	-0.356	0.360
Observations	5,134	7,701		

Difference between treated and control

Difference-in-difference

$$\frac{I_{i,t}}{K_{i,t-1}} = \alpha + \beta_1 d_{i,t}^R + \beta_2 d_i^T + \beta_3 d_{i,t}^R \times d_i^T + \gamma \overline{X}_{i,t}' + \zeta_t + \eta_i + \varepsilon_{i,t},$$

We are interested in beta3: how much more do treated firms invest after the reform.

Regression results

TABLE 6—ESTIMATED RESPONSE OF INVESTMENT RATE TO TAX SUBSIDY: BASELINE ESTIMATES

Dependent variable: $I_{i,t}/K_{i,t-1}$	(1)	(2)	(3)	(4)	(5)	(6)
$\frac{d_{i,t}^R \times d_i^T}{d_{i,t}^R \times d_i^T}$	0.021 (0.012)	0.022 (0.012)	0.022 (0.012)	0.023 (0.010)	0.025 (0.012)	0.025 (0.012)
$d_{i,t}^R$	0.002 (0.007)	0.001 (0.007)			, ,	
Growth rate of $turnover_{i,t}$		0.111 (0.016)	0.112 (0.016)	0.109 (0.016)	0.116 (0.016)	0.114 (0.016)
$MTR_{i,t}$					-0.042 (0.021)	-0.042 (0.022)
$Profitability_{i,t-1}$					0.298 (0.047)	0.300 (0.048)
Growth rate of total $assets_{i,t}$					0.015 (0.006)	0.015 (0.006)
Year fixed effects Sector-year fixed effects Firm fixed effects Number of firms Observations	No No Yes 3,473 17,365	No No Yes 3,473 17,365	Yes No Yes 3,473 17,365	No Yes Yes 3,473 17,365	Yes No Yes 3,473 17,365	No Yes Yes 3,473 17,365

Reaction time: different year-end

TABLE 8—ESTIMATED RESPONSE OF INVESTMENT RATE TO TAX SUBSIDY: ADJUSTMENT COSTS

	Bala	Not balanced after reform		
Dependent variable: $I_{i,t}/K_{i,t-1}$	Jan–June (1)	July–Dec (2)	Jan–June (3)	July–Dec (4)
$d_i^T \times \text{Year } 1$	0.000	0.036	0.005	0.020
	(0.032)	(0.015)	(0.028)	(0.010)
$d_i^T \times \text{Year } 2$	0.053 (0.034)	0.012 (0.019)	0.076 (0.031)	-0.005 (0.019)
$d_i^T \times \text{Year } 3$	0.086	0.024	0.076	0.026
	(0.030)	(0.015)	(0.027)	(0.010)
Control variables Sector-year fixed effects Firm fixed effects Number of firms Number of observations	Yes	Yes	Yes	Yes
	Yes	Yes	Yes	Yes
	Yes	Yes	Yes	Yes
	427	3,046	500	3,712
	2,135	15,230	2,448	17,811

Firms somehwat manipulate their size

But bunching is not driving results

TABLE 11—ESTIMATED RESPONSE OF INVESTMENT TO TAX SUBSIDY: EXCLUDING COMPANIES BUNCHING AT TURNOVER THRESHOLDS

Dependent variable:		
$I_{i,t}/K_{i,t-1}$	(1)	(2)
$d_{i,t}^R imes d_i^T$	0.024 (0.012)	0.025 (0.012)
Control variables	Yes	Yes
Year fixed effects	Yes	No
Sector-year fixed effects	No	Yes
Firm fixed effects	Yes	Yes
Number of firms	3,424	3,424
Observations	17,120	17,120

Cash flow effects (liquidity constraint)?

Firms that receive cash-flow in year 2 react already in year 1

Dependent variable: $I_{i,t}/K_{i,t-1}$	In arrears in Year 1 (1)	Always in arrears (2)
$d_i^T \times \text{Year } 1$	0.040 (0.021)	0.037 (0.019)
$d_i^T \times \text{Year } 2$	0.019 (0.021)	0.020 (0.020)
$d_i^T \times \text{Year } 3$	0.035 (0.016)	0.039 (0.018)

Cash flow effects (liquidity constraint)?

Dependent variable: $I_{i,t}/K_{i,t-1}$	In arrears in Year 1 (1)	Always in arrears (2)	Negative cash flow (3)	Cash flow above mean (4)	Ownership structure (5)
$d_i^T \times \text{Year } 1$	0.040 (0.021)	0.037 (0.019)			
$d_i^T \times \text{Year } 2$	0.019 (0.021)	0.020 (0.020)			
$d_i^T \times \text{Year } 3$	0.035 (0.016)	0.039 (0.018)			
$d_{i,t}^R imes d_i^T$			0.025 (0.012)	0.035 (0.019)	0.027 (0.011)
$d_{i,t}^R \times d_i^T \times$ Negative lagged cash flow			0.012 (0.030)		
$d_{i,t}^R \times d_i^T \times \text{Lagged cash flow above mean}$				-0.014 (0.020)	
$d_{i,t}^R \times d_i^T \times \text{Stand-alone company}$					-0.026 (0.030)

Cash flow effects (liquidity constraint)?

- Time of boom in UK economy, unlike stimulus during the recession in the USA inthe other paper
- Responses to tax incentives may differ over time and over the business cycle!

