ECOM181 Macroeconomics for Policy 2022/23 Semester 1 Joep Lustenhouwer ### Previous topic: 2001 tax rebates to households $$C_{i,t+1} - C_{i,t} = \sum_{s} \beta_{0s} * month_{s,i}$$ $$+ \beta'_{1} \mathbf{X}_{i,t} + \beta_{2} R_{i,t+1} + u_{i,t+1},$$ - Regress change in consumption on - Time dummies and other controls - And a measure of rebates (amount of rebates or indicator that is 1 when household had rebates) #### Previous topic: Households' responses to tax rebate TABLE 2—THE CONTEMPORANEOUS RESPONSE OF EXPENDITURES TO THE TAX REBATE | | | Panel A. Dep | endent variable: d | ollar change in | expenditures on: | | |--------------------------|------------------|---------------------------------|---------------------|------------------|---------------------------------|---------------------| | | Food | Strictly
nondurable
goods | Nondurable
goods | Food | Strictly
nondurable
goods | Nondurable
goods | | Estimation method | OLS | OLS | OLS | OLS | OLS | OLS | | Rebate | 0.109
(0.056) | 0.239
(0.115) | 0.373
(0.135) | | | | | I(Rebate > 0) | | | | 51.5
(27.6) | 96.2
(53.6) | 178.8
(65.0) | | Age | 0.570
(0.320) | 0.449
(0.550) | 1.165
(0.673) | 0.552
(0.318) | 0.391
(0.548) | 1.106
(0.670) | | Change in adults | 130.3 (57.8) | 285.8
(90.0) | 415.8
(102.8) | 131.1
(57.8) | 287.7
(90.2) | 418.6
(102.9) | | Change in children | 73.7
(45.3) | 98.3
(82.4) | 178.4
(98.3) | 74.0
(45.3) | 98.7
(82.5) | 179.2
(98.3) | | RMSE | 934 | 1680 | 2047 | 934 | 1680 | 2047 | | R ² (percent) | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | # **Previous topic: Liquidity constraints?** | | Dollar c | hange in: | Percent of | change in: | Dollar o | change in: | |---|---|--|---|---|--|--| | | Strictly
nondurable
goods | Nondurable goods | Strictly
nondurable
goods | Nondurable goods | Strictly
nondurable
goods | Nondurable goods | | | Interact | ion: Age | Interactio | on: Income | Interaction: | Liquid Assets | | | | ge ≤ 39
ge ≥ 56 | | ≤34,298
>69,000 | | ≤1,000
>8,000 | | $Rebate_{t+1}$ | 0.249
(0.177) | 0.363
(0.209) | 0.050
(0.163) | 0.129
(0.184) | -0.284
(0.177) | -0.243
(0.217) | | Rebate _{t+1} * Low (Low group diff) Rebate _{t+1} * High (High group diff) Rebate _t Rebate _t * Low | -0.063
(0.210)
-0.095
(0.264)
-0.266
(0.142) | 0.033
(0.238)
0.034
(0.304)
-0.250
(0.167)
0.425 | 0.319
(0.224)
0.275
(0.251)
-0.080
(0.148) | 0.627
(0.266)
0.256
(0.291)
-0.064
(0.172) | 0.569
(0.239)
0.312
(0.299)
0.201
(0.226)
-0.290 | 0.876
(0.284)
0.404
(0.364)
0.283
(0.261)
-0.292 | | Rebate _t * Low (Low group diff) Rebate _t * High (High group diff) | 0.271
(0.190)
-0.042
(0.228) | (0.223)
0.010
(0.270) | -0.053
(0.198)
-0.310
(0.235) | -0.067 (0.248) -0.246 (0.275) | (0.253) -0.659 (0.298) | -0.292 (0.302) -0.670 (0.358) | | N | 12,730 | 12,730 | 9,233 | 9,233 | 5,951 | 5,951 | # Plan for today: Investment - Discuss questions about investment - Bonus depreciation in the USA - Capital allowances in the UK #### **Questions to discuss** - What are the main features of investment at the micro level? - What drives the heterogeneity of investment responses to taxes and why? - How would you assess the potential impact of tax incentives to promote investment and what is the difficulty of doing so based on past experiences? #### Micro level investment - User costs? - Marginal q/ adjustment costs? - Cash flows important - Lumpy investment spikes $$GK_{it} = \frac{i_{it} - \delta k_{it-1}}{0.5 \times (k_{it-1} + k_{it})}$$ # Tax policy and heterogeneous investment behavior Zwick, Eric and Mahon, James, 2017 American Economic Review, Vol. 107(1): 217-248 #### **Bonus Depreciation of investment** Table 1—Regular and Bonus Depreciation Schedules for Five-Year Items | Year: | 0 | 1 | 2 | 3 | 4 | 5 | Total | |------------------------------------|-----|-----|------|------|------|------|-------| | Normal depreciation | | | | | | | | | Deductions (000s) | 200 | 320 | 192 | 115 | 115 | 58 | 1,000 | | Tax benefit ($\tau = 35$ percent) | 70 | 112 | 67.2 | 40.3 | 40.3 | 20.2 | 350 | | Bonus depreciation (50 percent) | | | | | | | | | Deductions (000s) | 600 | 160 | 96 | 57.5 | 57.5 | 29 | 1,000 | | Tax benefit ($\tau = 35$ percent) | 210 | 56 | 33.6 | 20.2 | 20.2 | 10 | 350 | #### Present value of deductions Present value of deductions $$z^0 = D_0 + \sum_{t=1}^T \frac{1}{(1+r)^t} D_t$$ In case of bonus depreciation: $$z = \theta + (1 - \theta)z^0.$$ - More long-lived investments benefit more from bonus depreciation - Bonus depreciation first 0.3, then 0.5, then 0, then 0.5 then 1. #### **Graphical evidence** Panel A. Intensive margin: bonus I Panel C. Extensive margin: bonus I Panel B. Intensive margin: bonus II Panel D. Extensive margin: bonus II ---- Treatment group (long duration industries) ---- Control group (short duration industries) ## Regression evidence | | Intensive margin: LHS variable is log(investment) | | | | | | | | |-----------------------|---|-------------------|----------------|------------------|----------------|----------------|--|--| | | (1) | (2) | (3) | (4) | (5) | (6) | | | | $z_{N,t}$ | 3.69
(0.53) | 3.78
(0.57) | 3.07
(0.69) | 3.02
(0.81) | 3.73
(0.70) | 4.69
(0.62) | | | | $CF_{it}/K_{i,t-1}$ | | 0.44
(0.016) | | | | | | | | Observations | 735,341 | 580,422 | 514,035 | 221,306 | 585,914 | 722,262 | | | | Clusters (firms) | 128,001 | 100,883 | 109,678 | 63,699 | 107,985 | 124,962 | | | | R^2 | 0.71 | 0.74 | 0.73 | 0.80 | 0.72 | 0.71 | | | | | Ex | tensive marg | in: LHS varia | able is $log(P($ | investment > | 0)) | | | | $z_{N,t}$ | 3.79 | 3.87 | 3.12 | 3.59 | 3.99 | 4.00 | | | | | (1.24) | (1.21) | (2.00) | (1.14) | (1.69) | (1.13) | | | | $CF_{it}/K_{i,t-1}$ | | 0.029
(0.0100) | | | | | | | | Observations | 803,659 | 641,173 | 556,011 | 247,648 | 643,913 | 803,659 | | | | Clusters (industries) | 314 | 314 | 314 | 274 | 277 | 314 | | | | R^2 | 0.87 | 0.88 | 0.88 | 0.93 | 0.90 | 0.90 | | | #### **Financial frictions** $$\max_{\{i_t,k_{t+1}\}} \sum_{s=t}^{\infty} \left(\frac{1}{1+r}\right)^{s-t} \left[k_s^{\alpha} - i_s + \eta(i_s,k_s)\right]$$ such that $$k_{t+1} = k_t + i_t \quad (\delta = 0) \text{ and } \eta(i_s, k_s) = \begin{cases} \eta_1(k_s^{\alpha} - i_s) & \text{if } k_s^{\alpha} < i_s \\ 0 & \text{if } k_s^{\alpha} \ge i_s \end{cases}$$ # Liquidity constraints? Table 6—Heterogeneity by Ex Ante Constraints | | Sa | les | Div p | Div payer? | | d cash | |------------------|----------------|----------------|----------------|----------------|----------------|----------------| | | Small | Big | No | Yes | Low | High | | $z_{N,t}$ | 6.29
(1.21) | 3.22
(0.76) | 5.98
(0.88) | 3.67
(0.97) | 7.21
(1.38) | 2.76
(0.88) | | Equality test | p = | 0.030 | p = | 0.079 | p = | 0.000 | | Observations | 177,620 | 255,266 | 274,809 | 127,523 | 176,893 | 180,933 | | Clusters (firms) | 29,618 | 29,637 | 39,195 | 12,543 | 45,824 | 48,936 | | R^2 | 0.44 | 0.76 | 0.69 | 0.80 | 0.81 | 0.76 | #### Non-convex adjustment costs? $$\max_{\{i_t, k_{t+1}\}} \sum_{s=t}^{\infty} \left(\frac{1}{1+r} \right)^{s-t} [k_s^{\alpha} - i_s - C(i_s)]$$ such that $$k_{t+1} = k_t + i_t$$ ($\delta = 0$) and $C(i_s) = \begin{cases} C \text{ if } i_s \neq 0 \\ 0 \text{ if } i_s = 0 \end{cases}$ ## Non-convex adjustment costs? Table B.7: Heterogeneity by Predictors of Adjustment | | | LHS Variable is Log(Eligible Investment) | | | | | | | |---|-------------------------|--|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------| | | Sales (| Growth | A | ge | P(S _I | oike) | P(Ina | ctive) | | | Low | High | Young | Old | Low | High | Low | High | | $z_{N,t}$ | 5.24***
(0.93) | 2.27*
(1.09) | 3.62***
(1.03) | 4.56***
(0.69) | 6.53***
(0.91) | 4.27**
(1.62) | 3.33**
(1.14) | 6.22***
(1.43) | | Test | p = | .038 | p = | .435 | p = | .039 | p = | .010 | | Observations
Firms
R ² | 167621
22659
0.65 | 162871
22653
0.70 | 133752
30503
0.70 | 254651
29525
0.73 | 131234
39723
0.82 | 131177
45391
0.80 | 136625
33434
0.77 | 126549
28504
0.57 | # The impact of investment incentives: Evidence from UK corporation tax returns Maffini, Giorgia, Xing, Jing, Devereux, Michael P., 2019. American Economic Journal: Economic Policy, Vol. 11(3): 361-389 ## Capital allowance in the UK - Small and medium-sized firms had larger accelerated first-year capital allowances (→ deduct larger proportion of investment in plants and machinery from taxes in first year) - But how small is medium-sized? - The definition for this suddenly changed considerably in 2004 - Compare firms that used to be large and suddenly became 'medium sized' (treated firms) with firms that remained large throughout (control) ## Capital allowance in the UK Table 1—Rates of Capital Allowances for Plant and Machinery in First Year (Percent) | | Treated | Control | Always small | Always medium | |-----------|---------|---------|--------------|---------------| | 2001–2002 | 25 | 25 | 40 | 40 | | 2002-2003 | 25 | 25 | 40 | 40 | | 2003-2004 | 25 | 25 | 40 | 40 | | 2004-2005 | 40 | 25 | 50 | 40 | | 2005-2006 | 40 | 25 | 40 | 40 | | 2006-2007 | 40 | 25 | 50 | 40 | | 2007-2008 | 40 | 25 | 50 | 40 | | 2008-2009 | 20 | 20 | 20 | 20 | ## Comparison before and after policy change TABLE 5—GROSS INVESTMENT RATE | | Mean SD | Mean SD | <i>t</i> -test statistics | Pr(T < t) | |-----------------|----------------------|---------------------|---------------------------|-----------| | Treatment group | | | | | | | Non-qualifying | Qualifying | | | | | years | years | | | | Investment rate | 0.169 0.300 | 0.192 0.349 | -2.258 | 0.012 | | Observations | 1,812 | 2,718 | | | | Control group | | | | | | | Before policy change | After policy change | | | | Investment rate | 0.203 0.337 | 0.205 0.337 | -0.356 | 0.360 | | Observations | 5,134 | 7,701 | | | #### Difference between treated and control #### Difference-in-difference $$\frac{I_{i,t}}{K_{i,t-1}} = \alpha + \beta_1 d_{i,t}^R + \beta_2 d_i^T + \beta_3 d_{i,t}^R \times d_i^T + \gamma \overline{X}_{i,t}' + \zeta_t + \eta_i + \varepsilon_{i,t},$$ We are interested in beta3: how much more do treated firms invest after the reform. ## **Regression results** TABLE 6—ESTIMATED RESPONSE OF INVESTMENT RATE TO TAX SUBSIDY: BASELINE ESTIMATES | Dependent variable: $I_{i,t}/K_{i,t-1}$ | (1) | (2) | (3) | (4) | (5) | (6) | |--|------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------| | $\frac{d_{i,t}^R \times d_i^T}{d_{i,t}^R \times d_i^T}$ | 0.021 (0.012) | 0.022 (0.012) | 0.022 (0.012) | 0.023 (0.010) | 0.025 (0.012) | 0.025 (0.012) | | $d_{i,t}^R$ | 0.002
(0.007) | 0.001
(0.007) | | | , , | | | Growth rate of $turnover_{i,t}$ | | 0.111
(0.016) | 0.112
(0.016) | 0.109
(0.016) | 0.116
(0.016) | 0.114
(0.016) | | $MTR_{i,t}$ | | | | | -0.042 (0.021) | -0.042 (0.022) | | $Profitability_{i,t-1}$ | | | | | 0.298
(0.047) | 0.300
(0.048) | | Growth rate of total $assets_{i,t}$ | | | | | 0.015
(0.006) | 0.015
(0.006) | | Year fixed effects Sector-year fixed effects Firm fixed effects Number of firms Observations | No
No
Yes
3,473
17,365 | No
No
Yes
3,473
17,365 | Yes
No
Yes
3,473
17,365 | No
Yes
Yes
3,473
17,365 | Yes
No
Yes
3,473
17,365 | No
Yes
Yes
3,473
17,365 | #### Reaction time: different year-end TABLE 8—ESTIMATED RESPONSE OF INVESTMENT RATE TO TAX SUBSIDY: ADJUSTMENT COSTS | | Bala | Not balanced after reform | | | |---|------------------|---------------------------|------------------|------------------| | Dependent variable: $I_{i,t}/K_{i,t-1}$ | Jan–June (1) | July–Dec (2) | Jan–June (3) | July–Dec (4) | | $d_i^T \times \text{Year } 1$ | 0.000 | 0.036 | 0.005 | 0.020 | | | (0.032) | (0.015) | (0.028) | (0.010) | | $d_i^T \times \text{Year } 2$ | 0.053
(0.034) | 0.012
(0.019) | 0.076
(0.031) | -0.005 (0.019) | | $d_i^T \times \text{Year } 3$ | 0.086 | 0.024 | 0.076 | 0.026 | | | (0.030) | (0.015) | (0.027) | (0.010) | | Control variables Sector-year fixed effects Firm fixed effects Number of firms Number of observations | Yes | Yes | Yes | Yes | | | Yes | Yes | Yes | Yes | | | Yes | Yes | Yes | Yes | | | 427 | 3,046 | 500 | 3,712 | | | 2,135 | 15,230 | 2,448 | 17,811 | #### Firms somehwat manipulate their size ## But bunching is not driving results TABLE 11—ESTIMATED RESPONSE OF INVESTMENT TO TAX SUBSIDY: EXCLUDING COMPANIES BUNCHING AT TURNOVER THRESHOLDS | Dependent variable: | | | |---------------------------|------------------|------------------| | $I_{i,t}/K_{i,t-1}$ | (1) | (2) | | $d_{i,t}^R imes d_i^T$ | 0.024
(0.012) | 0.025
(0.012) | | Control variables | Yes | Yes | | Year fixed effects | Yes | No | | Sector-year fixed effects | No | Yes | | Firm fixed effects | Yes | Yes | | Number of firms | 3,424 | 3,424 | | Observations | 17,120 | 17,120 | # Cash flow effects (liquidity constraint)? Firms that receive cash-flow in year 2 react already in year 1 | Dependent variable: $I_{i,t}/K_{i,t-1}$ | In arrears
in Year 1
(1) | Always
in arrears
(2) | |---|--------------------------------|-----------------------------| | $d_i^T \times \text{Year } 1$ | 0.040
(0.021) | 0.037
(0.019) | | $d_i^T \times \text{Year } 2$ | 0.019
(0.021) | 0.020 (0.020) | | $d_i^T \times \text{Year } 3$ | 0.035
(0.016) | 0.039
(0.018) | ## Cash flow effects (liquidity constraint)? | Dependent variable: $I_{i,t}/K_{i,t-1}$ | In arrears
in Year 1
(1) | Always
in arrears
(2) | Negative cash flow (3) | Cash flow above mean (4) | Ownership structure (5) | |--|--------------------------------|-----------------------------|------------------------|--------------------------|-------------------------| | $d_i^T \times \text{Year } 1$ | 0.040
(0.021) | 0.037
(0.019) | | | | | $d_i^T \times \text{Year } 2$ | 0.019
(0.021) | 0.020 (0.020) | | | | | $d_i^T \times \text{Year } 3$ | 0.035
(0.016) | 0.039
(0.018) | | | | | $d_{i,t}^R imes d_i^T$ | | | 0.025
(0.012) | 0.035
(0.019) | 0.027
(0.011) | | $d_{i,t}^R \times d_i^T \times$ Negative lagged cash flow | | | 0.012
(0.030) | | | | $d_{i,t}^R \times d_i^T \times \text{Lagged cash flow above mean}$ | | | | -0.014 (0.020) | | | $d_{i,t}^R \times d_i^T \times \text{Stand-alone company}$ | | | | | -0.026 (0.030) | ## Cash flow effects (liquidity constraint)? - Time of boom in UK economy, unlike stimulus during the recession in the USA inthe other paper - Responses to tax incentives may differ over time and over the business cycle!