ECOM181 Macroeconomics for Policy

2022/23 Semester 1

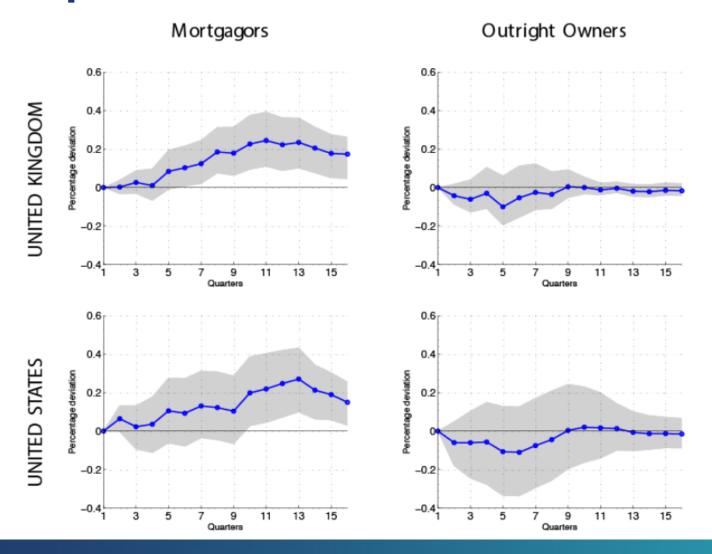
Joep Lustenhouwer

Plan for today

- Measure of the size of household consumption responses to cash handouts
- Consumption responses to different types of income changes and differences across different household types
- 2001 Tax rebates

- What is the measure of the size of household consumption responses to cash handouts?
- How and why do consumption responses vary across different household types?
- How would you assess the potential impact of cash transfer programmes and what is the difficulty of doing so based on past experiences?

• What is the measure of the size of household consumption responses to cash handouts?


- What is the measure of the size of household consumption responses to cash handouts?
- → Marginal propensity to consume (MPC)

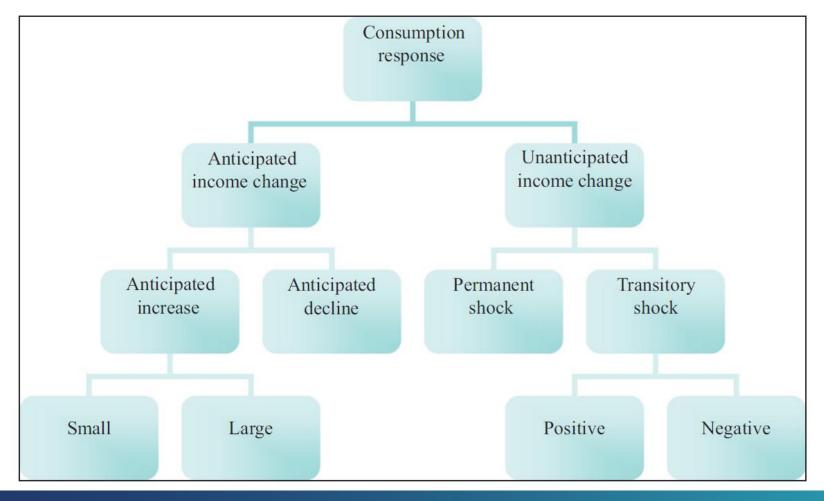
• How and why do consumption responses vary across different household types?

Last week: Response non-durables to interest rate cut

Last week: Mortgage debt and MPC

- So do households with mortgages spend more because they have a higher income increase?
- Not really. The income increases is largely caused by general equilibrium effects (e.g. real interest rate channel on investment)
 - Income rises by around \$700 (UK) and \$760 (US) for mortgagors
 - Income also rises considerably for outright owners: \$450 (UK) and \$585 (US)
- The difference in spending cannot be explained by these relatively small income differences
- Instead, mortgagors spend a larger proportion of their additional income
- \rightarrow Higher marginal propensity to consume (MPC) $\frac{dc}{dY}$

Last week: Large shares of liquidity constrained households with high MPC


The consumption response to income changes

Jappelli, Tullio and Pistaferri, Luigi, 2010.

Annual Review of Economics, Vol. 2: 479-506

Different type of income changes can give different responses

Unanticipated income changes

Does household consumption respond to unexpected income changes?

Theory – PIH

$$\frac{1}{r}c_t = A_t + \frac{1}{1+r} \sum_{i=0}^{\infty} \left(\frac{1}{1+r}\right)^i E_t[y_{t+i}]$$

$$c_t = r[A_t + H_t] = y_t^p$$

- Yes, consumption depends on expected future income
 - Unexpected changes in income hence lead to changes in consumption
- If the income shock is transitory, the effect should be very small
- A permanent income shock should have a one-for-one impact on consumption

Empirical framework

$$\Delta c_{it} = \alpha E_{t-1} \Delta y_{it} + \gamma z_{it} + \sum_{k=1}^{K} \varphi^k \pi_{it}^k + \xi_{it}$$

- π are different components of the income process
 - This allows for income shocks with different degrees of persistence
- With the φ parameters, one can estimate the marginal propensity to consume with respect to income shocks

Empirical findings

- In line with theory, there are much larger consumption responses to permanent shocks than to transitory shocks
- Several studies find however that the response to a permanent shock is considerably lower than 1.
 - E.g., Blundell et al. (2008)
- This suggests that households were able to insure (or anticipate) permanent shocks to their income
- Further, households that are likely to be liquidity constraint (e.g. low asset holdings) are found to also respond considerably to negatives transitory shocks.
 - E.g., Browning & Crossley (2001b)

Explaining empirical findings

- Kaplan&Violante (2010) have a model with precautionary savings and liquidity constraints that can rationalize all three findings.
- Consumers who can freely borrow and save are able to
 - smooth transitory shocks to a large extent (the marginal propensity to consume out of a transitory income shock is 0.05)
 - and also somewhat permanent shocks, but to a much lower extent (the marginal propensity to consume out of a permanent shock is 0.77).
- When consumers are unable to borrow, both marginal propensities to consume increase considerably (to 0.18 and 0.93, respectively).

Anticipated income changes

Does household consumption respond to changes in income that are anticipated?

Theory – PIH

$$u'(c_{it-1}) = (1+\delta)^{-1} E_{t-1}[(1+r_t)u'(c_{it})],$$

$$E_{t-1}u'(c_{it}) = u'(c_{it-1}).$$

- PIH says no
- There is a consumption plan that smooths out changes in icome over the life-cycle
- Only unexpected changes in income lead to adjustments to this consumption plan and hence to changes in consumption

Empirical framework

$$\Delta c_{it} = \alpha E_{t-1} \Delta y_{it} + \gamma z_{it} + \sum_{k=1}^{K} \varphi^k \, \pi_{it}^k + \xi_{it}$$

• With α , one can test if *expected income growth does not affect consumption growth*.

Empirical findings

- Does household consumption respond to changes in income that are anticipated?
- Empirically, consumption does respond to anticipated income changes
- This might be caused by households being liquidity constrained.
 - When you anticipate an income increase, PIH says you should already start consuming more today
 - But due to borrowing/liquidity constraints, this may not be feasible
- Emprical findings support this theory

"Consumption appears much less responsive to anticipated income declines (for instance, after retirement), a case in which liquidity constraints have no bearing."

Shea (1995), Garcia et al. (1997), and Jappelli & Pistaferri (2000)

 How would you assess the potential impact of cash transfer programmes and what is the difficulty of doing so based on past experiences?

Household Expenditure and the Income Tax Rebates of 2001

Johnson, David, S., Parker, Jonathan A, and Souleles, Nicholas S., 2006.

American Economic Review, 96(5): 1589-1610

2001 tax rebates

- Most households received tax rebates of 300 or 600 Euro in 2001
- But different households received the rebate in different weeks/months in a RANDOMIZED fashion.
- Compare spending of households that received rebates in a certain period with households that did not
- Exogeneous (random) variation allows identifying *causal* effect of tax rebates on households
- What is marginal propensity to consume out of additional income?

2001 tax rebates

$$C_{i,t+1} - C_{i,t} = \sum_{s} \beta_{0s} * month_{s,i}$$

$$+ \beta'_{1} \mathbf{X}_{i,t} + \beta_{2} R_{i,t+1} + u_{i,t+1},$$

- Regress change in consumption on
 - Time dummies and other controls
 - And a measure of rebates (amount of rebates or indicator that is 1 when household had rebates)

Contemporaneous response to tax rebate

Table 2—The Contemporaneous Response of Expenditures to the Tax Rebate

		Panel A. Dependent variable: dollar change in expenditures on:				
	Food	Strictly nondurable goods	Nondurable goods	Food	Strictly nondurable goods	Nondurable goods
Estimation method	OLS	OLS	OLS	OLS	OLS	OLS
Rebate	0.109 (0.056)	0.239 (0.115)	0.373 (0.135)			
I(Rebate > 0)				51.5 (27.6)	96.2 (53.6)	178.8 (65.0)
Age	0.570 (0.320)	0.449 (0.550)	1.165 (0.673)	0.552 (0.318)	0.391 (0.548)	1.106 (0.670)
Change in adults	130.3 (57.8)	285.8 (90.0)	415.8 (102.8)	131.1 (57.8)	287.7 (90.2)	418.6 (102.9)
Change in children	73.7 (45.3)	98.3 (82.4)	178.4 (98.3)	74.0 (45.3)	98.7 (82.5)	179.2 (98.3)
RMSE	934	1680	2047	934	1680	2047
R ² (percent)	0.6	0.6	0.6	0.6	0.6	0.6

Longer-run response to tax rebate

TABLE 4—THE DYNAMIC RESPONSE OF EXPENDITURES TO THE TAX REBATE

Dollar		hange in:	Percent change in:		Dollar change in:			
	Strictly nondurable goods	Nondurable goods	Strictly nondurable goods	Nondurable goods	Strictly nondurable goods	Nondurable goods		
	Panel A. Lagged rebate and baseline sample $(N = 12,730)$							
Estimation method	OLS	OLS	OLS	OLS	2SLS	2SLS		
$Rebate_{t+1}$ or	0.248	0.386	1.86	3.29	0.208	0.386		
$I(Rebate_{t+1} > 0)$	(0.114)	(0.135)	(1.05)	(1.01)	(0.111)	(0.135)		
Rebate, or	-0.156	-0.082	-1.89	-1.44	-0.190	-0.113		
$I(Rebate_t > 0)$	(0.099)	(0.115)	(1.06)	(1.02)	(0.101)	(0.118)		
	Implied cumulative fraction of rebate spent over both three-month periods							
	0.340	0.691	NA	NA	0.227	0.659		
	(0.218)	(0.260)			(0.212)	(0.262)		

Even-longer-run response to tax rebate

	Panel B. Two lags of rebate and extended sample $(N = 15,022)$						
Estimation method	OLS	OLS	OLS	OLS	2SLS	2SLS	
$Rebate_{t+1}$ or	0.247	0.386	1.85	3.29	0.208	0.386	
$I(Rebate_{t+1} > 0)$	(0.114)	(0.135)	(1.04)	(1.01)	(0.111)	(0.135)	
Rebate, or	-0.172	-0.099	-2.17	-1.72	-0.212	-0.139	
$I(Rebate_t > 0)$	(0.097)	(0.113)	(1.05)	(1.01)	(0.099)	(0.115)	
$Rebate_{t-1}$ or	-0.034	-0.123	-0.32	-1.67	-0.055	-0.191	
$I(Rebate_{t-1} > 0)$	(0.121)	(0.141)	(1.23)	(1.21)	(0.122)	(0.142)	
	Impl	ied cumulative fra	action of rebate s	pent over all thro	ee three-month pe	riods	
	0.362	0.838	NA	NA	0.145	0.690	
	(0.322)	(0.392)			(0.315)	(0.396)	

Liquidity constraints?

	Dollar change in: Strictly		Percent change in: Strictly		Dollar change in: Strictly	
	nondurable goods	Nondurable goods	nondurable goods	Nondurable goods	nondurable goods	Nondurable goods
	Interact	ion: Age	Interactio	on: Income	Interaction:	Liquid Assets
		$ge \le 39$ $ge \ge 56$		≤34,298 >69,000		$\leq 1,000$ > 8,000
$Rebate_{t+1}$	0.249	0.363	0.050	0.129	-0.284	-0.243
	(0.177)	(0.209)	(0.163)	(0.184)	(0.177)	(0.217)
$Rebate_{t+1} * Low$	-0.063	0.033	0.319	0.627	0.569	0.876
(Low group diff)	(0.210)	(0.238)	(0.224)	(0.266)	(0.239)	(0.284)
$Rebate_{t+1} * High$	-0.095	0.034	0.275	0.256	0.312	0.404
(High group diff)	(0.264)	(0.304)	(0.251)	(0.291)	(0.299)	(0.364)
Rebate,	-0.266	-0.250	-0.080	-0.064	0.201	0.283
·	(0.142)	(0.167)	(0.148)	(0.172)	(0.226)	(0.261)
Rebate, * Low	0.271	0.425	-0.053	-0.067	-0.290	-0.292
(Low group diff)	(0.190)	(0.223)	(0.198)	(0.248)	(0.253)	(0.302)
Rebate, * High	-0.042	0.010	-0.310	-0.246	-0.659	-0.670
(High group diff)	(0.228)	(0.270)	(0.235)	(0.275)	(0.298)	(0.358)
N	12,730	12,730	9,233	9,233	5,951	5,951

Liquidity constraints?

	Dollar change in:		Percent change in:		Dollar change in:	
	Strictly nondurable goods	Nondurable goods	Strictly nondurable goods	Nondurable goods	Strictly nondurable goods	Nondurable goods
	Interaction: Age Low: age ≤ 39 High: age ≥ 56		<i>Interaction: Income</i> Low: ≤34,298 High: >69,000		Interaction: Liquid Assets Low: ≤1,000 High: >8,000	
	Impi	lied cumulative fr	action spent ove	er both three-mon	th periods for ea	ich group
Baseline group	0.232 (0.359)	0.476 (0.431)	0.020 (0.363)	0.194 (0.410)	-0.367 (0.405)	-0.203 (0.501
Low group	0.377 (0.323)	0.967 (0.370)	0.604 (0.347)	1.380 (0.428)	0.481 (0.364)	1.256
High group	-0.001 (0.395)	0.554 (0.476)	0.259 (0.421)	0.461 (0.507)	-0.403 (0.569)	-0.065

