ECOM181 Macroeconomics for Policy

2022/23 Semester 1

Joep Lustenhouwer

Plan for today

- Discussion based on key reading
- Relating to solow model
- Growth accounting based on production function (more in TA session)

Growth accounting: multi-factor productivity estimates, UK: October to December 2019

Statistical bulletin ONS

Questions to discuss

- What are the factors behind the productivity slowdown?
- Why do you think the Global Financial Crisis has persistent effects on productivity?
- What do you think of the potential impact of Brexit on productivity in the UK?

Questions to discuss

What are the factors behind the productivity slowdown?

Output growth and productivity

- Output has been growing, but not due to growth in productivity (MFP)
- Instead, hours worked has been driving growth

Hours worked is driving growth

Output growth and productivity

- Output has been growing, but not due to growth in productivity (MFP)
- Instead, hours worked has been driving growth
- Output per hour worked (labor productivity) has not been growing
 - And any growth there is driven by labor composition
 - MFP has been having a negative influence
 - And capital recently as well

Slow productivity growth driven by labor composition

Slow productivity growth driven by labor composition

Labor composition: more hours for high-skilled workers

MFP growth

- Improvement in technology and efficiency of the production process (MFP) has not been driving growth.
- But does that perhaps depend on the sector?

How do different sectors contribute to MFP growth?

Further decomposition of MFP growth (services)

Questions to discuss

 Why do you think the Global Financial Crisis has persistent effects on productivity?

Actually in the US the slowdown started before 2007

Actually in the US the slowdown started before 2007

Maybe it is IT?

Questions to discuss

 What do you of the potential impact of Brexit on productivity in the UK?

Plan for today

- Discussion based on key reading
- Relating to solow model
- Growth accounting based on production function (more in TA session)

Solow model

- Solow model focuses on role of capital per worker
 - determined in the long run by the saving rate of households
 - Short-run fluctuations may arise (convergence)
- Hours worked is not modeled in detail
- Quality of labor not modelled
- MFP (A) is exogenous and often assumed constant
- →Good first step, but we need extensions / other models to understand actual economic growth.

Plan for today

- Discussion based on key reading
- Relating to solow model
- Growth accounting based on production function (more in TA session)

As part of the slow model, you saw the following production function

$$Y_t = A_t K_t^{\alpha} L_t^{1-\alpha}$$

- Y_t : output
- A_t : total factor productivity
- K_t : capital input
- L_t : labor input
- 1α : labor share of income
- This can be written as

$$\frac{Y_t}{N_t} = A_t^{\frac{1}{1-\alpha}} \left(\frac{K_t}{Y_t}\right)^{\frac{\alpha}{1-\alpha}} \left(\frac{L_t}{N_t}\right)$$

$$\frac{Y_t}{N_t} = A_t^{\frac{1}{1-\alpha}} \left(\frac{K_t}{Y_t}\right)^{\frac{\alpha}{1-\alpha}} \left(\frac{L_t}{N_t}\right)$$

So we can decompose economic (per capita) growth in

- growth driven by MFP
- growth driven by a rising capital stock
- growth driven by an increase in hours worked
- → This is a simplified version of the decomposition that we just discussed

In the class (TA session) next week you will implement this using UK data:

- Y_t : real GDP
- N_t : working-age (15-64) population
- *K_t*: real capital input
- L_t : total annual hours worked
- 1α : labor share of income

The tricky part is capital for which no time series is available.

→ Use investment time series to construct it, using perpetual inventory method

$$K_{t+1} = (1 - delta)K_t + I_t$$

$$K_{1981} = (1 - delta)K_{1980} + I_{1980}$$

$$K_{1982} = (1 - delta)K_{1981} + I_{1981}$$

$$K_{2019} = (1 - delta)K_{2018} + I_{2018}$$

