1.) is the primary mass (e.g., could be the sun).
2.) is the secondary mass (e.g., the earth).

→ To derive the distance to \(L_2 \).

\[
\begin{align*}
\text{force balance: } & F_c = F_{g,1} + F_{g,2}. \\
F_{g,1} &= \frac{G M_1 M}{(a+d)^2}, & F_{g,2} &= \frac{G M_2 M}{d^2}
\end{align*}
\]
1. \(\text{a)} \quad F_c = m a c = \frac{m v^2}{r} \)

\[w^2 = \frac{v^2}{r^2}, \quad v = \sqrt{\frac{G M}{r}} \]

\[\Rightarrow w^2 = \frac{G M}{r^3}, \quad r = a + d \]

\[F_c = m (a + d) \frac{G M}{r^3} \]

\[\Rightarrow \text{Force balance:} \quad F_c = F_{y,1} + F_{y,2} \]

\[m (a + d) w^2 = \frac{G M_1 M_1}{(a + d)^3} + \frac{G M_2}{d^2} \]

\[w^2 = \frac{G M_1}{(a + d)^3} + \frac{G M_2}{d^2(a + d)} \]

\[\Rightarrow \text{Assume} \quad M_1 \gg M_2 \]

\[w^2 \sim \frac{G M_1}{(a + d)^3} \]

\[(a + d)^3 \sim a^3 \text{ if } a \gg d \]

\[\Rightarrow w^2 \sim \frac{G M_1}{a^3} \]
1. a) \[(a+d)^2 = a^2 (1 + \frac{d}{a})^2 \]
\[\approx a^2 (1 - 2d/a) \]

\[\Rightarrow \text{Force equation becomes:} \]
\[(a+d) \omega^2 = \frac{GM_1}{(a+d)^2} + \frac{GM_2}{d^2} \]

\[\frac{GM_1}{a^3} (a+d) = \frac{GM_1}{a^2} (1 - 2d/a) + \frac{GM_2}{d^2} \]
\[\frac{GM_1}{a^3} + \frac{GM_1 d}{a^3} = \frac{GM_1}{a^2} - 2 \frac{GM_1 d}{a^3} + \frac{GM_2}{d^2} \]
\[3 \frac{GM_1 d}{a^3} = \frac{GM_2}{d^2} \]
\[d^3 = \frac{M_2 a^3}{3M_1} \]
\[\therefore d = a \left(\frac{M_2}{3M_1} \right)^{1/3} \]
1.) b) \(d_{L_1} = \frac{r_{\text{Hill}}}{3M_1} \) \\
it is the same as distance to \(L_2 \) for this \\
level of approximation (we neglected higher order \(\) \\
terms in Binomial expansion) \\

1.) c) Hill radius tells us where \(F_{y_1} + F_{y_2} \) balance with \\
the centripetal force \(F_c \) \\

\(\Rightarrow \) within Hill radius satellites do not bound to the \\
secondary mass. \(\) (if low velocity) \\

\(\Rightarrow \) outside of Hill sphere \(F_{y_1} \) and \(F_c \) prevent the \\
satellite from being bound to the secondary mass. \\

2.) a) Ceres is a dwarf planet in the asteroid belt between \\
Mars and Jupiter \\

b) Largest stable orbit determined by Hill radius: \\
\(R_H = a \left(\frac{M_2}{3M_1} \right)^{\frac{1}{3}} \) \\
\(R_H = 2.76 [\text{AU}] \cdot \left(\frac{1.45 \times 10^{-8} [\text{M}_\odot]}{1 [\text{AU}]} \right) \cdot \left(\frac{9.65 \times 10^{20} [\text{kg}]}{3 \cdot (1.98 \times 10^{30} [\text{kg}])} \right)^{\frac{1}{3}} = 2.23 \times 10^7 [\text{m}] \)
2.) c) Does even orbital eccentricity affect the Hill radius?

→ YES! \(R_H \) is based on the assumption the orbit is circular.

→ \(R_H \) depends on distance to primary mass \(M_1 \)

→ So \(R_H \) will **DECREASE** as even goes towards pericentre and **INCREASE** towards apocentre.

3.) a) Astronomical object that gives smallest \(R_H \), most strongly limits the radial extent of satellites orbiting Saturn.

→ For example:

\[
R_{H, \text{sun}} = a_{\text{sat}} \cdot \left(\frac{M_{\text{sat}}}{3M_0} \right)^{1/3}
\]

\[
R_{H, \text{sun}} = 9.54 [\text{au}] \cdot \left(\frac{5.68 \times 10^{26}}{3 \times (1.9 \times 10^{30})} \right)^{1/3}
\]

\[
R_{H, \text{sun}} = 0.43 [\text{au}]
\]

→ \(R_{H, \text{Jupiter}} = (a_{\text{sat}} - a_{\text{Jup}}) \cdot \left(\frac{M_{\text{sat}}}{3M_{\text{Jup}}} \right)^{1/3} \)

\[
= 4.3 [\text{au}] \cdot \left(\frac{5.68 \times 10^{26}}{3 \times (1.9 \times 10^{27})} \right) = 2.0 \text{ au}
\]

→ \(R_{H, \text{sun}} < R_{H, \text{Jup}} \) the Sun is the stronger influencer.
3.) b) To find radial extent of satellites w.r.t. to the Sun. We do a similar calculation to c) a).

\[R_{\text{sat}, \text{Eu}} = (a_{\text{sat}} - a_{\text{Eu}}) \cdot \left(\frac{M_{\text{Eu}}}{3M_{\text{sun}}} \right)^{1/3} \]

\[= (9.54 \text{ [au]} - 0.035 \text{ [au]}) \cdot \left(\frac{2.31 \times 10^{21} \text{ [kg]}}{3 \times 1.98 \times 10^{30} \text{ [kg]}} \right)^{1/3} \]

\[= 0.01424 \text{ [au]} \]

\[R_{\text{sat}, \text{Eu}} = a_{\text{Eu}} \cdot \left(\frac{M_{\text{Eu}}}{3M_{\text{sat}}} \right)^{1/3} \]

\[= 0.035 \text{ [au]} \cdot \left(\frac{2.31 \times 10^{21} \text{ [kg]}}{3 \times 5.68 \times 10^{26} \text{ [kg]}} \right)^{1/3} \]

\[= 0.000631 \text{ [au]} \]

\(R_{\text{sat}, \text{Eu}} \) is smallest so Saturn has biggest influence on Venus.

4.) If \(\frac{R_{\text{Hill}}}{R} < 1 \) then the centre of the body is bound to the secondary mass, but other layers are not. The body could be broken apart by tidal forces.