Image and video processing
(EBU723U)

Image transformations

Dr. Miles Hansard
Today’s agenda

• Algebraic transformations
• Geometric transformations
Today’s agenda

• Algebraic transformations
• Geometric transformations
Example: background subtraction
Algebraic operations

• Binary operators involving more than one image
• Usually the images are of the same dimension
• Examples
 – addition of two or more images
 – subtraction of one image from another
 – multiplication and division
Algebraic operations

• Non invertible
 – Original information is lost (e.g., 2+2 = 3+1 = 1+3 = ...)

• Clipping
 – Combination of pixel values may exceed range of output variable
 – then clipping occurs, e.g., if unsigned byte, 230 +80 = 310 > 255

• Normalization
 – In general, may need to map \(f \in [a, b] \) to \(g \in [c, d] \)
 \[
 g = c + \frac{f - a}{b - a} (d - c)
 \]

 Where typically \(c = 0 \) and \(d = 255 \) for eight-bit images
Example

3 + 5 = 8

\[
\begin{array}{c}
3 \\
+ \\
5 \\
= \\
8 \\
\end{array}
\]
Example: noise removal

\[
\begin{align*}
\text{original} + \times \frac{1}{2} &= \text{result}
\end{align*}
\]
Noise Removal

Single image

Average of 10

Average of 50

Average of 100

EBU723U
Sum for noise reduction

- If statistically independent noise is added to each of several identical images
- Or multiple noisy images are summed
 - The sum image has a higher SNR
- SNR can be computed by taking ratio of expected values of Signal and Noise
Edge detection
Edge detection using subtraction

• If an image is displaced (translated) relative to another image, then the difference between them approximates the first derivative

\[
\Delta y = \frac{f(x + \Delta x) - f(x)}{\Delta x}
\]

where \(\Delta x \) is the displacement

• This is called a forward difference approximation because \(f(x) \) is compared to a value on the right. The central difference is often a better approximation:

\[
\Delta y = \frac{f(x + \Delta x/2) - f(x - \Delta x/2)}{\Delta x}
\]
Finite-difference filters

• Derivative operators can be implemented as linear filters.
• The backward x-difference (applied to image-rows) filter is $t = [-1, 1]$
• The central x-difference is between values at $x+1/2$ and $x-1/2$
• Let the image-row (locally) be $f = [a, b, c]$
• Values between a,b and between b,c are computed by the averaging filters
 $$u = [1/2, 1/2, 0] \text{ and } v = [0, 1/2, 1/2]$$ respectively.
• Then the central difference is $v \cdot f - u \cdot f = (v-u) \cdot f$
• So we can define the central x-difference filter as
 $$w = v - u = [-1/2, 0, 1/2]$$
• The y-difference filters can be similarly constructed.
Edge detection using subtraction

Original

Gradient Image
Edge-profile and derivative
Generalization of scalar derivative: Gradient

Given an image: \(f(x, y) \), then

\[
\nabla f(x, y) = \left[\frac{\partial}{\partial x} f(x, y), \frac{\partial}{\partial y} f(x, y) \right]
\]

where

\(\nabla \) is called the gradient operator

Note that the gradient ‘image’ contains a vector for each pixel!
Gradient properties

- Points in direction of max upward slope
- Is a vector *perpendicular* to the *iso-contour* of the intensity
- Gradient magnitude
 - Useful scalar function of gradient
 - is equal to value of slope

\[
| \nabla f(x,y) | = \sqrt{ \left(\frac{\partial}{\partial x} f(x,y) \right)^2 + \left(\frac{\partial}{\partial y} f(x,y) \right)^2 }
\]
Gradient magnitude

- Square root
 - computationally expensive \rightarrow sometimes simpler approximation

\[|\nabla f(x,y)| \approx \max \left[|f(x,y) - f(x+1,y)|, |f(x,y) - f(x,y+1)| \right] \]
Directional derivative

• More generally, given the horizontal and vertical derivatives, the derivative in any other direction θ can be obtained:

$$\frac{\partial}{\partial \theta} f(x, y) = \cos(\theta) \frac{\partial}{\partial x} f(x, y) + \sin(\theta) \frac{\partial}{\partial y} f(x, y)$$

• This is just the dot-product of the gradient with the unit-vector in direction θ.

• E.g. the derivative at angle zero is just $\frac{\partial}{\partial x} f(x, y)$

• This property is called *steerability* of the gradient
Today’s agenda

• Algebraic transformations
• Geometric transformations
Spatial transformations
Example: rotation

- Simply a matrix multiplication
Example: scaling
Geometric operations

• Change spatial relationship among pixels in an image
 – Continuous: rubber-sheet geometry
 – Discontinuous: change pixel neighborhoods

• Two considerations
 – Spatial transformation
 – Grey-level interpolation
Coordinate transformations

$\left(a(x_{old}, y_{old}), b(x_{old}, y_{old}) \right)_{new}$

$I_{old}(x, y) \ast (x, y)_{old}$

$I_{new}(x', y')$

$(x', y')_{new}$
Scaling

- Scaling operation:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} ax \\ by \end{bmatrix}$$

- Or, in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

scaling matrix
2D rotation

θ

(x', y')

(x, y)
2D rotation

• Or, in matrix form:

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix}
= \begin{bmatrix}
 \cos(\theta) & -\sin(\theta) \\
 \sin(\theta) & \cos(\theta)
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]

• Even though \(\sin(\Theta)\) and \(\cos(\Theta)\) are nonlinear functions of \(q\),
 – \(x'\) is a **linear combination** of \(x\) and \(y\)
 – \(y'\) is a **linear combination** of \(x\) and \(y\)

 • To derive this, represent \([x,y]\) in the form \([r \cos(\Phi), r \sin(\Phi)]\)
 • Represent \([x',y']\) in the form \([r \cos(\Phi+\Theta), r \sin(\Phi+\Theta)]\)
 • Use the trigonometric identities:

\[
\cos(\Phi+\Theta) = \cos(\Theta) \cos(\Phi) - \sin(\Theta) \sin(\Phi)
\]

\[
\sin(\Phi+\Theta) = \sin(\Theta) \cos(\Phi) + \cos(\Theta) \sin(\Phi)
\]
Matrix representation - summary

• Represent 2D transformation by a matrix

\[
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
\]

• Multiply matrix by column vector
 ⇔ apply transformation to point

\[
\begin{bmatrix}
x' \\
y'
\end{bmatrix} = \begin{bmatrix}
a & b \\
c & d
\end{bmatrix} \begin{bmatrix}
x \\
y
\end{bmatrix}
\]

\[
x' = ax + by \\
y' = cx + dy
\]
Matrix representation - summary

- Transformations combined (‘composed’) by multiplication
- Matrix multiplication is *associative*

\[
\begin{bmatrix}
x' \\
y'
\end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} i & j \\ k & l \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}
\]

Matrices are a convenient and efficient way to represent a sequence of transformations

- Matrices are *invertible* if the determinant is nonzero
- The determinant of \(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \) is the scalar \(ad - bc \)
2x2 matrices

- What types of transformations can be represented with a 2x2 matrix?

2D identity

\[x' = x \]
\[y' = y \]

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} = \begin{bmatrix}
 1 & 0 \\
 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]

2D scale around (0,0)

\[x' = s_x \times x \]
\[y' = s_y \times y \]

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} = \begin{bmatrix}
 s_x & 0 \\
 0 & s_y
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]
What types of transformations can be represented with a 2x2 matrix?

2D rotate around (0,0)

\[
x' = \cos \Theta \cdot x - \sin \Theta \cdot y \\
y' = \sin \Theta \cdot x + \cos \Theta \cdot y
\]

\[
\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}
\]

2D shear

\[
x' = x + \text{sh}_x \cdot y \\
y' = \text{sh}_y \cdot x + y
\]

\[
\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & \text{sh}_x \\ \text{sh}_y & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}
\]
2x2 matrices

• What types of transformations can be represented with a 2x2 matrix?

2D mirror about Y axis

\[\begin{align*}
x' &= -x \\
y' &= y
\end{align*} \]

\[
\begin{bmatrix}
x' \\
y'
\end{bmatrix}
= \begin{bmatrix}
-1 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
\]

2D mirror over (0,0)

\[\begin{align*}
x' &= -x \\
y' &= -y
\end{align*} \]

\[
\begin{bmatrix}
x' \\
y'
\end{bmatrix}
= \begin{bmatrix}
-1 & 0 \\
0 & -1
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
\]
2x2 matrices

• What types of transformations can be represented with a 2x2 matrix?

2D translation

\[x' = x + t_x \]
\[y' = y + t_y \]

Only linear 2D transformations can be represented with a 2x2 matrix.
Homogeneous coordinates

• How can we represent translation as a 3x3 matrix?

\[x' = x + t_x \]
\[y' = y + t_y \]
Homogeneous coordinates

• Homogeneous coordinates
 – represent coordinates in 2 dimensions with a 3-vector
 – seem unintuitive, but they make graphics operations much easier

$$\begin{bmatrix} x \\ y \end{bmatrix} \xrightarrow{\text{homogeneous coords}} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
Homogeneous coordinates

• How can we represent translation as a 3x3 matrix?
 – Using the rightmost column

\[
x' = x + t_x \\
y' = y + t_y
\]

\[
\begin{bmatrix}
1 & 0 & t_x \\
0 & 1 & t_y \\
0 & 0 & 1
\end{bmatrix}
\]

Translation
Homogeneous coordinates

- In a plane, the **homogeneous coordinates** of a point whose Cartesian coordinates are \((x,y)\) are any three numbers \((a_1, a_2, a_3)\) for which

\[
\frac{a_1}{a_3} = x \\
\frac{a_2}{a_3} = y \\
\text{Let } a_3 = 1
\]
Coordinate translation

\[
\begin{pmatrix}
x' \\
y'
\end{pmatrix}_{new} = \begin{pmatrix}
a(x, y) \\
b(x, y)
\end{pmatrix}_{new} = \begin{pmatrix}
1 & 0 & x_0 \\
0 & 1 & y_0
\end{pmatrix}_{new} \begin{pmatrix}
x \\
y \\
1
\end{pmatrix}_{old}
\]

\[(x_0, y_0)\]

I\(_{\text{new}}\) Coordinates

I\(_{\text{old}}\) Coordinates
Coordinate scaling

\[
\begin{bmatrix}
x' \\
y' \\
1
\end{bmatrix}_{\text{new}} = \begin{bmatrix}
a(x, y) \\
b(x, y) \\
1
\end{bmatrix}_{\text{new}} = \begin{bmatrix}
\frac{1}{c} & 0 & 0 \\
0 & \frac{1}{d} & 0 \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
x \\
y \\
1
\end{bmatrix}_{\text{old}}
\]

old, new, \(c, d > 0 \)
Coordinate rotation (around the origin)

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix}_{\text{new}} =
\begin{bmatrix}
 a(x,y) \\
 b(x,y) \\
 1
\end{bmatrix}_{\text{new}} =
\begin{bmatrix}
 \cos(\theta) & -\sin(\theta) & 0 \\
 \sin(\theta) & \cos(\theta) & 0 \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}_{\text{old}}
\]
Compound transformations

• Compound transformations
 – order of operations is important
 – perform individual operations and combine into single function
 – Example: rotation around arbitrary point \((x_0, y_0)\)
 • Translate from \((x_0, y_0)\) to \((0, 0)\)
 • Rotate
 • Translate back to \((x_0, y_0)\)
Rotation around arbitrary point

\[
\begin{bmatrix}
x'
\end{bmatrix}_{\text{new}} = \begin{bmatrix}
a(x, y) \\
b(x, y)
\end{bmatrix}_{\text{new}} = \begin{bmatrix}
1 & 0 & x_0 \\
0 & 1 & y_0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}_{\text{transl}}
\]

\[
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}_{\text{transl}} = \begin{bmatrix}
\cos(\theta) & -\sin(\theta) & 0 \\
\sin(\theta) & \cos(\theta) & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}_{\text{trans & rot}}
\]
3D basic transformation in space

- Rotation around X-axis
 \[
 \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & \cos \theta & -\sin \theta & 0 \\
 0 & \sin \theta & \cos \theta & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \]

- Rotation around Y-axis
 \[
 \begin{bmatrix}
 \cos \theta & 0 & \sin \theta & 0 \\
 0 & 1 & 0 & 0 \\
 -\sin \theta & 0 & \cos \theta & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \]

- Rotation around Z-axis
 \[
 \begin{bmatrix}
 \cos \theta & -\sin \theta & 0 & 0 \\
 \sin \theta & \cos \theta & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \]
Skew and shear

• Take an image and **skew (or shear)** it to the side

\[\text{Shear}_\theta = \begin{bmatrix} 1 & \tan(\theta) \\ 0 & 1 \end{bmatrix} \]

• **Effect of the transformation**
 – Squares become **parallelograms**
 • \(x \) coordinates skew to the right
 • \(y \) coordinates stay the same
 – Each scan line of the original image shifts relative to the one below it
Skew and shear
Skew and shear

- Everything along the line $y=1$ stays on the same line $y=1$, but is translated to the right
- Distance between points on this line is preserved
Example
Inverse warping

In general, if we map each pixel \(P = [x, y] \) to a new position \(P' = W(x, y) \), we would end up with holes in the new image!

This can be avoided by using the inverse of the warp \(W \).

- Loop through all destination pixels \([x', y']\)
- Find corresponding source position \([x, y] = W^{-1}(x', y')\)
- Find colour \(f_{x'y'} = f_{xy} \) by interpolation in source image.

Recall bilinear interpolation:

\[
f_{xy} = [1 - y, y] \begin{bmatrix} f_{00} & f_{10} \\ f_{01} & f_{11} \end{bmatrix} \begin{bmatrix} 1 - x \\ x \end{bmatrix}
\]

Interpolation may blur the result slightly.
What did we learn today?

- Algebraic transformations
- Geometric transformations