Chapter 9 Short Summary
* Defining Finite Relations
(& defines a Neutral operator).
Option 1) (General approach)
e.g. A relation R on A:
> [image:]
> [image:]
> [image:]
[image:]
Use the relation like this:
> [image:]
[image:]

Option 2) (explicitly state each pair)
e.g. A relation R on {1, 2}:
> [image:]

* Checking if R is reflexive, symmetric, transitive:
To check these for &R on domain A use:
For reflexive:
> [image:]
Symmetric:
> [image:]
Transitive:
> [image:]

* For a partition [image:]of a set A, the following must hold:

a) every set in [image:] is non-empty:
> [image:]

b) the sets are pairwise disjoint:
> [image:]

c) the union of the sets in [image:]is [image:]:
> [image:]

* Partitions and Equivalence Relations
Recall theorem: For an equivalence relation R on A, Equivalence classes of R [image: http://i.stack.imgur.com/S95GB.png] Partition of A.
Part 1) (A Partition defines an Equivalence Relation)
After having defined a Partition [image:], (e.g. > [image:]), we need to define the relation as follows:
> [image:]

(We can then check that this is really an equivalence relation.) (Note that the neutral operator [image:] can be used as a function if it is enclosed in backward quotes.)

Part 2) (An Equivalence Relation defines a Partition)
(For an equivalence relation R on A, we need to define a function [image:] such that, for each [image:], [image:]; which gives the equivalence classes that make up the partition). Do this as follows:
> [image:]
[image:]
Then the Partition is given by:
> [image:]

(We can then check that this really is a partition.)

* Solving Equations using solve()
-> Use solve() to solve equations of the form .
> [image:]
[image:]
or equivalently,
> [image:]
[image:]
-> If the equation contains more than one variable then you must specify the variable to solve for as the second argument, e.g.
> [image:]
[image:]

-> For expressions with more complicated solutions, solve() may not display explicit solutions by default. In this case, use explicit as a second argument. e.g. > [image:]
(output not displayed in these notes)

-> For non-polynomial equations solve() generally finds only one solution. To find all solutions, give solve() a final argument of allsolutions. e.g. [image:] = [image:]
Maple has expressed this solution in terms of a parameter named [image:] The tilde indicates that there are assumptions on this variable and we can find out what they are by applying the function [image:] to the variable (without the tilde):
> [image:]
Originally _Z1, renamed _Z1~:
 is assumed to be: integer

-> To solve a system of simultaneous equations, put them into a set (or list), and when specifying variables to solve for (in the second argument), put them into a set (or list) too.
e.g.
> [image:]
[image:]

-> You can also put single equations in a set as the argument of solve(), e.g.
> [image:]
[image:]

This makes it easy to check solutions using [image:], (which accepts a set or list as its second argument), e.g.
> [image:]
[image:]

-> To solve single inequalities, put it in a set or list: e.g.
> [image:]
[image:]
> [image:]
[image:]

-> Solve simultaneous inequalities (or a mix of equations and inequalities) similarly:
e.g.
> [image:]
(output hidden due to being long)
> [image:]
(output hidden due to being long)

* Approximating solutions using fsolve()
The Maple function fsolve() computes numerical approximations to the roots of equations to the current precision. (Useful when no exact solutions or the exact solutions not needed).
fsolve() is used in a similar way to solve(). E.g.
 > [image:]
[image:]
-> But by default, fsolve() computes only real solutions. To find complex solutions give second argument complex, e.g.
> [image:]
[image:]
-> (One way to use a different precision is to call fsolve() within evalf(), like this):
> [image:]
[image:]

-> For non-polynomial equations fsolve() returns only one root, the one typically closest to 0, e.g.
> [image:]
[image:]
Force fsolve() to find a different root by specifying an isolating interval (i.e. an interval that contains one and only one root), e.g.
> [image:]
[image:]
(Tip: Try graphing to get an idea for which intervals to choose)

-> fsolve() also solves systems of simultaneous equations. You can find all the roots by specifying ranges for both variables, as above.
e.g.
Root 1:
> [image:]
[image:]
Root 2:
> [image:]
[image:]

* numer() and denom()
Use numer() and denom() to extract the numerator and denominator of a fraction.
e.g.
> [image:]= [image:], [image:] = [image:].

* iquo and irem()

Integer quotient and remainder are implemented as functions iquo() and irem() such that and satisfy the equation and the conditions that and the sign of r is the same as the sign of a. (Thus q and r are unique).

e.g.
> [image:]
[image:]
> [image:]
[image:]
> [image:]
[image:]

-> (Remark: In Maple, divisibility functions that apply only to integers have names that begin with ‘i’ to distinguish them from those that apply to polynomials.)
-> Aside: Testing for divisibility
There appears to be no way to use the vertical bar notation actively for divisibility, but we could implement an infix integer divisibility predicate and test it like this:
> [image:]
[image:]
> [image:]
[image:]

* igcd() and ilcm()
(i.e. Integer greatest common divisor (gcd) and Integer lowest common multiple (lcm)).
Use as follows:
e.g.
> [image:]
[image:]
> [image:]
[image:]

[bookmark: _GoBack]Note that igcd() and ilcm() accept any number of arguments. However gcd() and lcm() only accept two arguments.

Note that [image:] = [image:].
(Recall Euclid’s Algorithm for computing gcd.)
(Recall [image:]for computing lcm.)

image5.wmf

image6.wmf

image7.wmf

image8.wmf

image9.wmf

image10.wmf

image11.wmf

image12.wmf

image13.wmf

image14.wmf

image15.png

image16.wmf

image17.wmf

image18.wmf

image19.wmf

image20.wmf

image21.wmf

image22.wmf

image23.wmf

image24.wmf

image25.wmf

image26.wmf

image27.wmf

image28.wmf

image29.wmf

image30.wmf

image31.wmf

image32.wmf

image33.wmf

image34.wmf

image35.wmf

image36.wmf

image37.wmf

image38.wmf

image39.wmf

image40.wmf

image41.wmf

image42.wmf

image43.wmf

image44.wmf

image45.wmf

image46.wmf

image47.wmf

image48.wmf

image49.wmf

image50.wmf

image51.wmf

image52.wmf

image53.wmf

image54.wmf

image1.wmf

image55.wmf

image56.wmf

image57.wmf

image58.wmf

image59.wmf

image60.wmf

image61.wmf

image62.wmf

image63.wmf

image64.wmf

image2.wmf

image65.wmf

image66.wmf

image67.wmf

image68.wmf

image69.wmf

image70.wmf

image71.wmf

image72.wmf

image73.wmf

image74.wmf

image3.wmf

image75.wmf

image76.wmf

image77.wmf

image78.wmf

image79.wmf

image80.wmf

image81.wmf

image82.wmf

image83.wmf

image4.wmf

