Chapter 9 Short Summary
* Defining Finite Relations
(& defines a Neutral operator).
Option 1) (General approach)
e.g. A relation R on A:
> [image: ]
> [image: ]
> [image: ]
[image: ]
Use the relation like this:
> [image: ]
[image: ]

Option 2) (explicitly state each pair)
e.g. A relation R on {1, 2}:
> [image: ]


* Checking if R is reflexive, symmetric, transitive:
To check these for &R on domain A use:
For reflexive:
> [image: ]
Symmetric: 
> [image: ]
Transitive:
> [image: ]

* For a partition [image: ]of a set A, the following must hold:

a) every set in [image: ] is non-empty:
> [image: ]

b) the sets are pairwise disjoint:
> [image: ]

c) the union of the sets in [image: ]is [image: ]:
> [image: ]
 
* Partitions and Equivalence Relations
Recall theorem: For an equivalence relation R on A, Equivalence classes of R [image: http://i.stack.imgur.com/S95GB.png] Partition of A.
Part 1) (A Partition defines an Equivalence Relation)
After having defined a Partition [image: ], (e.g. > [image: ]), we need to define the relation as follows: 
> [image: ]

(We can then check that this is really an equivalence relation.) (Note that the neutral operator [image: ] can be used as a function if it is enclosed in backward quotes.)

Part 2) (An Equivalence Relation defines a Partition)
(For an equivalence relation R on A, we need to define a function [image: ] such that, for each [image: ], [image: ]; which gives the equivalence classes that make up the partition). Do this as follows: 
> [image: ]
[image: ]
Then the Partition is given by:
> [image: ]

(We can then check that this really is a partition.)

* Solving Equations using solve()
-> Use solve() to solve equations of the form .
> [image: ]
[image: ]
or equivalently,
> [image: ]
[image: ]
-> If the equation contains more than one variable then you must specify the variable to solve for as the second argument, e.g.
> [image: ]
[image: ]

-> For expressions with more complicated solutions, solve() may not display explicit solutions by default. In this case, use explicit as a second argument. e.g. > [image: ]
(output not displayed in these notes)

-> For non-polynomial equations solve() generally finds only one solution. To find all solutions, give solve() a final argument of allsolutions. e.g. [image: ] = [image: ]
Maple has expressed this solution in terms of a parameter named [image: ] The tilde indicates that there are assumptions on this variable and we can find out what they are by applying the function [image: ] to the variable (without the tilde):
> [image: ]
Originally _Z1, renamed _Z1~:
  is assumed to be: integer

-> To solve a system of simultaneous equations, put them into a set (or list), and when specifying variables to solve for (in the second argument), put them into a set (or list) too. 
e.g. 
> [image: ]
[image: ]

-> You can also put single equations in a set as the argument of solve(), e.g.
> [image: ]
[image: ]

This makes it easy to check solutions using [image: ], (which accepts a set or list as its second argument), e.g. 
> [image: ]
[image: ]

-> To solve single inequalities, put it in a set or list: e.g.
> [image: ]
[image: ]
> [image: ]
[image: ]
 
-> Solve simultaneous inequalities (or a mix of equations and inequalities) similarly: 
e.g. 
> [image: ]
(output hidden due to being long)
> [image: ]
(output hidden due to being long)

* Approximating solutions using fsolve()
The Maple function fsolve() computes numerical approximations to the roots of equations to the current precision. (Useful when no exact solutions or the exact solutions not needed).
fsolve() is used in a similar way to solve(). E.g.
 > [image: ]
[image: ]
-> But by default, fsolve() computes only real solutions. To find complex solutions give second argument complex, e.g.
> [image: ]
[image: ]
-> (One way to use a different precision is to call fsolve() within evalf(), like this):
> [image: ]
[image: ]


-> For non-polynomial equations fsolve() returns only one root, the one typically closest to 0, e.g.
> [image: ]
[image: ]
Force fsolve() to find a different root by specifying an isolating interval (i.e. an interval that contains one and only one root), e.g.
> [image: ]
[image: ]
(Tip: Try graphing to get an idea for which intervals to choose)

-> fsolve() also solves systems of simultaneous equations. You can find all the roots by specifying ranges for both variables, as above. 
e.g.
Root 1:
> [image: ]
[image: ]
Root 2:
> [image: ]
[image: ]


* numer() and denom()
Use numer() and denom() to extract the numerator and denominator of a fraction.
e.g.
> [image: ]= [image: ], [image: ] = [image: ].


* iquo and irem()

Integer quotient and remainder are implemented as functions iquo() and irem() such that   and  satisfy the equation  and the conditions that  and the sign of r is the same as the sign of a. (Thus q and r are unique).

e.g.
> [image: ]
[image: ]
> [image: ]
[image: ]
> [image: ]
[image: ]

-> (Remark: In Maple, divisibility functions that apply only to integers have names that begin with ‘i’ to distinguish them from those that apply to polynomials.)
-> Aside: Testing for divisibility
There appears to be no way to use the vertical bar notation actively for divisibility, but we could implement an infix integer divisibility predicate and test it like this:
> [image: ]
[image: ]
> [image: ]
[image: ]


* igcd() and ilcm()
(i.e. Integer greatest common divisor (gcd) and Integer lowest common multiple (lcm)). 
Use as follows: 
e.g.
> [image: ]
[image: ]
> [image: ]
[image: ]

[bookmark: _GoBack]Note that igcd() and ilcm() accept any number of arguments. However gcd() and lcm() only accept two arguments.

Note that [image: ] = [image: ].
(Recall Euclid’s Algorithm for computing gcd.) 
(Recall [image: ]for computing lcm.)
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